首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many differentiation processes in both prokaryotes and eukaryotes begin with an asymmetric division, producing 'daughter' cells that differ in size and developmental fate. This is particularly obvious in the well-studied prokaryotic life cycles of Caulobacter and Bacillus. In no system, however, is the mechanism of asymmetric division understood. Here I propose a model for the mechanism of asymmetric division during sporulation in Bacillus subtilis. The model explains both the timing and asymmetric localization of spore-septum formation. It also explains the morphological phenotypes of various asporogenous (spo) mutants.  相似文献   

2.
A new mutation, mpo, which affects the synthesis of some membrane proteins and sporulation in Bacillus subtilis was identified. The mpo mutation was tightly linked to the overproduction of membrane proteins MP32 and MP18 (molecular weights of 32,000 and 18,000, respectively) and the temperature-sensitive sporulation phenotype. Genetic analysis showed that the mpo mutation maps between the spoIIIB and lys loci.  相似文献   

3.
The penicillin-binding proteins (PBPs) of Bacillus subtilis were examined in samples collected at various times from sporulating cultures and compared with the PBPs in a presporulation sample. Large increases in vegetative PBPs 2B and 3 and the appearance of at least one new PBP (42,000 daltons) occurred at reproducible times during sporulation. In some strains a second new PBP (60,000 daltons) was also produced. By comparing the PBP activities in sporulating cells and two spo0 mutants we have classified these changes as sporulation-related events rather than the consequences of stationary-phase aging. The other vegetative PBPs (PBPs 1, 2A, 4, and 5) decreased during sporulation, but not in sufficient amount or at the appropriate time to account for the appearance of the new proteins. A possible connection between specific PBP changes and the penicillin-sensitive stages of sporulation is suggested.  相似文献   

4.
Heat-shock proteins during growth and sporulation of Bacillus subtilis   总被引:6,自引:0,他引:6  
Four major heat-shock proteins (hsps) with apparent molecular masses of 84, 69, 32 and 22 kDa were detected in exponentially growing stationary phase and sporulating cells of Bacillus subtilis heat-shocked from 30 to 43 degrees C. The most abundant, hsp69, is probably analogous to the E. coli groEL protein. These proteins were transiently inducible by heat-shock. Partial purification of RNA polymerase revealed several other minor hsps. One of these, a 48 kDa polypeptide probably corresponds to sigma 43. The synthesis of this polypeptide and at least two other proteins appeared to be under sporulation and heat-shock regulation and was affected by the SpoOA mutation.  相似文献   

5.
Engulfment in Bacillus subtilis is mediated by two complementary systems, SpoIID, SpoIIM and SpoIIP (DMP), which are essential for engulfment, and the SpoIIQ-SpoIIIAGH (Q-AH) zipper, which provides a secondary engulfment mechanism and recruits other proteins to the septum. We here identify two mechanisms by which DMP localizes to the septum. The first depends on SpoIIB, which is recruited to the septum during division and provides a septal landmark for efficient DMP localization. However, sporangia lacking SpoIIB ultimately localize DMP and complete engulfment, suggesting a second mechanism for DMP localization. This secondary targeting pathway depends on SpoIVFA and SpoIVFB, which are recruited to the septum by the Q-AH zipper. The absence of a detectable localization phenotype in mutants lacking only SpoIVFAB (or Q-AH) suggests that SpoIIB provides the primary DMP localization pathway while SpoIVFAB provides a secondary pathway. In keeping with this hypothesis, the spoIIB spoIVFAB mutant strain has a synergistic engulfment defect at septal thinning (which requires DMP) and is completely defective in DMP localization. Thus, the Q-AH zipper both provides a compensatory mechanism for engulfment when DMP activity is reduced, and indirectly provides a compensatory mechanism for septal localization of DMP when its primary targeting pathway is disrupted.  相似文献   

6.
Sporulating Bacillus subtilis cells assemble a multimeric membrane complex connecting the mother cell and developing spore that is required to maintain forespore differentiation. An early step in the assembly of this transenvelope complex (called the A–Q complex) is an interaction between the extracellular domains of the forespore membrane protein SpoIIQ and the mother cell membrane protein SpoIIIAH. This interaction provides a platform onto which the remaining components of the complex assemble and also functions as an anchor for cell–cell signalling and morphogenetic proteins involved in spore development. SpoIIQ is required to recruit SpoIIIAH to the sporulation septum on the mother cell side; however, the mechanism by which SpoIIQ specifically localizes to the septal membranes on the forespore side has remained enigmatic. Here, we identify GerM, a lipoprotein previously implicated in spore germination, as the missing factor required for SpoIIQ localization. Our data indicate that GerM and SpoIIIAH, derived from the mother cell, and SpoIIQ, from the forespore, have reciprocal localization dependencies suggesting they constitute a tripartite platform for the assembly of the A–Q complex and a hub for the localization of mother cell and forespore proteins.  相似文献   

7.
8.
The mean volumes of stationary-phase cells of wild-type and asporogenous mutants of Bacillus subtilis have been measured. Mutants blocked at stage 0 of sporulation either produced cells that had the same volume as the developing sporangium or they divided to produce cells of one-half this volume. The order of expression of the genes affected by the mutations in these strains was determined by biochemical characterization and by construction of double sporulation mutants. Mutants that produced small cells were blocked at an earlier stage of sporulation than those that produced large cells. It is suggested that the following dependent sequence must occur before the formation of the prespore spetum: (i) the initiation of sporulation, (ii) a signal to block the final central division site, and (iii) a signal to activate a polar septum site.  相似文献   

9.
The ftsH gene encodes an ATP- and Zn(2+)-dependent metalloprotease which is anchored to the cytoplasmic membrane via two transmembrane segments in such a way that the very short amino- and the long carboxy termini are exposed to the cytoplasm. Deletion of the ftsH gene in Bacillus subtilis results in a pleiotropic phenotype such as filamentous growth. This observation prompted us to ask whether ftsH is involved in cell division. A translational fusion was constructed between the complete coding region of ftsH and gfp(+) the latter carrying five point mutations to obtain enhanced fluorescence. We detected that the FtsH protein accumulates in the midcell septum of dividing cells, and during sporulation first in the asymmetrically located septa of sporulating cells and later in the membrane which engulfs the forespore. These observations revealed a new function of FtsH.  相似文献   

10.
Heat-shock proteins in membrane vesicles of Bacillus subtilis   总被引:1,自引:0,他引:1  
Fractionation of B. subtilis cells after heat shock, from 37 degrees C to 54 degrees C, shows an increase in synthesis of proteins localized in cell membranes and a decrease in synthesis of proteins localized in cytosol. There is no such effect of heat shock at temperature of 45 degrees C. Autoradiograms of electrophoretically separated proteins, labelled during heat shock at 54 degrees C, reveal 26 heat-shock proteins (hsps) in membrane vesicles and 11 hsps in cytosol, five of which are common to both fractions. Heat shock at 45 degrees C induces 18 hsps localized in membrane vesicles and 13 hsps localized in cytosol, six of which are common to both fractions. Results are interpreted as showing a relevant role of membrane proteins in cell response to shock at high temperature, pointing to two steps of defense against heat stress.  相似文献   

11.
The Gram-positive bacterium Bacillus subtilis can initiate the process of sporulation under conditions of nutrient limitation. Here, we review some of the last 5?years of work in this area, with a particular focus on the decision to initiate sporulation, DNA translocation, cell-cell communication, protein localization and spore morphogenesis. The progress we describe has implications not only just for the study of sporulation but also for other biological systems where homologs of sporulation-specific proteins are involved in vegetative growth.  相似文献   

12.
13.
J W Huh  J Shima    K Ochi 《Journal of bacteriology》1996,178(16):4935-4941
Endogenous ADP-ribosylation was detected in Bacillus subtilis, as determined in vitro with crude cellular extracts. The ADP-ribosylated protein profile changed during growth in sporulation medium, displaying a temporary appearance of two ADP-ribosylated proteins (36 and 58 kDa) shortly after the end of exponential growth. Mutants resistant to 3-methoxybenzamide, a known inhibitor of ADP-ribosyltransferase, were obtained, and a significant proportion (15%) were found to be defective in both sporulation and antibiotic production. These mutants failed to ADP-ribosylate the 36- and 58-kDa proteins. The parent strain also lost the ability to ADP-ribosylate these proteins when grown in the presence of 3-methoxybenzamide at a concentration at which sporulation but not cell growth was severely inhibited. Results from genetic transformations showed that the mutation conferring resistance to 3-methoxybenzamide, named brgA, was cotransformed with the altered phenotypes, i.e., defects in ADP-ribosylation and sporulation. spoOA and spoOF mutants displayed an ADP-ribosylation profile similar to that of the parent strain, but a spoOH mutant failed to ADP-ribosylate any proteins, including the 36- and 58-kDa proteins. The significance of protein ADP-ribosylation in sporulation was further indicated by the observation that ADP-ribosylation of the 36-kDa protein could be induced by treatment with decoyinine, an inhibitor of GMP-synthetase, and by amino acid limitation, both of which resulted in an immediate decrease in GTP pool size eventually leading to massive sporulation. We propose that a new sporulation gene, which presumably controls sporulation via ADP-ribosylation of certain functional proteins, exists.  相似文献   

14.
Control of sporulation initiation in Bacillus subtilis   总被引:6,自引:0,他引:6  
  相似文献   

15.
We describe the application of immunofluorescence microscopy to visualization of the subcellular localization of proteins involved in coat morphogenesis and chromosome packaging during the process of sporulation in Bacillus subtilis . In confirmation and extension of previous findings, we show that SpolVA, which is responsible for guiding coat formation to the surface of the outer membrane that surrounds the developing spore, assembles into a shell that is located close to or on the surface of this enveloping membrane. CotE, which is responsible for the formation of the outer layer of the coat, assembles into a second shell of apparently larger diameter. Assembly of SpolVA could be detected as early as the morphological stage of polar septation and closely followed the enveloping membrane of the mother cell during the stage of engulfment, thereby providing a sensitive and diagnostic marker for this phagocytic-like process. Surprisingly, the chromosome of the developing spore and the small, acid-soluble proteins, known as α/β-type SASPs, that are known to coat the spore chromosome, were found to co-localize to a doughnut-like ring of approximately 1 µm in diameter. The use of a double mutant lacking the α/β-type SASP demonstrated that these high abundance, DNA-binding proteins are responsible for packaging the chromosome of the developing spore into this unusual structure. We conclude that sporulation in B. subtilis is a fertile system for addressing cell biological problems in a bacterium and that immunofluorescence microscopy provides a sensitive method for visualizing protein subcellular localization at high resolution.  相似文献   

16.
In response to nutrient limitations, Bacillus subtilis cells undergo a series of morphological and genetic changes that culminate in the formation of endospores. Conversely, excess catabolites inhibit sporulation. It has been demonstrated previously that excess catabolites caused a decrease in culture medium pH in a process that required functional AbrB. Culture medium acidification was also shown to inhibit sigmaH-dependent sporulation gene expression. The studies reported here investigate the effects of AbrB-mediated pH sensing on B. subtilis developmental competence. We have found that neither addition of a pH stabilizer, MOPS (pH 7.5), nor null mutations in abrB blocked catabolite repression of sporulation. Moreover, catabolite-induced culture medium acidification was observed in cultures of catabolite-resistant sporulation mutants, crsA47, rvtA11, and hpr-16, despite their efficient sporulation. These results suggest that AbrB-mediated pH sensing is not the only mechanism regulating catabolite repression of sporulation. The AbrB pathway may function to channel cells toward genetic competence, as opposed to other postexponential differentiation pathways.  相似文献   

17.
spoII mutants formed heat-resistant spores when transformed with spo+ DNa near the start of sporulation. Many of the spores formed remained genetically spoII. It is deduced from this result and previous epistasis experiments that the spoII loci are transcribed before the spore septum is formed.  相似文献   

18.
During Bacillus subtilis sporulation, SpoIIIE is required for both postseptational chromosome segregation and membrane fusion after engulfment. Here we demonstrate that SpoIIIE must be present in the mother cell to promote membrane fusion and that the N-terminal membrane-spanning segments constitute a minimal membrane fusion domain, as well as direct septal localization.  相似文献   

19.
Electrons can be transferred to the respiratory chain in whole cells and in membrane vesicles of Bacillus subtilis W 23 by the membrane impermeable electron donor reduced 5-N-methyl-phenazonium-3-sulfonate as efficiently as by the membrane permeable electron donor reduced 5-N-methyl-phenazonium methyl-sulfate, indicating that the respiratory chain is accessible from the outside of the membrane.Succinate is oxidized by whole cells and membrane vesicles at a low rate and does not energize transport of l-glutamate. In the presence of 5-N-methyl-phenazonium-3-sulfonate or 5-N-methyl-phenazonium methyl-sulfate, the oxidation rate and the rate of l-glutamate transport are increased considerably. The electrons are transferred directly from succinic dehydrogenase to these acceptors. Succinic dehydrogenase must therefore be exposed to the outside surface of the membrane in both membrane vesicles and whole cells. The exposure of succinic dehydrogenase to the outside is also indicated by the observations that only a 5% increase in the oxidation rates of succinate-5-N-methyl-phenazonium methylsulfate and succinate-5-N-methyl-phenazonium-3-sulfonate is observed upon solubilization of the membrane with the nonionic detergent Brij-58. Furthermore, treatment of membrane vesicles with trypsin decreases by more than 95% these oxidation rates.NADH is oxidized at a high rate and energizes transport of l-glutamate in whole cells and membrane vesicles effectively. The NADH-oxidation is not effected by trypsin treatment of the vesicles indicating that the oxidation occurs at the inside-surface of the membrane. Trypsin treatment of the vesicles, however, significantly decreases the rate of l-glutamate transport driven by NADH. Therefore component(s) of the transport system for l-glutamate must be effected by trypsin treatment. No apparent differences could be observed in the localization of membrane-bound functions between membrane vesicles and whole cells. This strongly supports the contention that the vesicle membrane of B. subtilis has the same orientation as the cytoplasmic membrane of whole cells.  相似文献   

20.
Protein phosphorylation in Bacillus subtilis was assayed in vitro by using extracts prepared from cells at various times during growth and sporulation. At least six proteins were labeled in vitro by using [gamma-32P]ATP and extracts of vegetative cells. In extracts prepared at the end of exponential growth and during stationary phase, 12 to 13 proteins were labeled. Seven of the phosphoproteins were purified by fast-performance liquid chromatography and polyacrylamide gel electrophoresis, blotted to Immobilon membranes, and subjected to partial protein sequencing. One of the sequences had sequence homology (greater than 45%) to elongation factor G from several bacterial species, and four sequences matched the predicted amino-terminal sequences of the outB, orfY-tsr, orfU, and ptsH genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号