首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The mutagenic interaction between near-ultraviolet (365 nm) radiation and the alkylating agents ethyl methanesulphonate (EMS) and methyl methanesulphonate (MMS) was studied in a repair-competent and an excision-deficient strain of Escherichia coli. Near-UV radiation modified the metabolic response of exposure to these chemicals and either reduced or increased their mutagenic efficiency. Based on these results, an experimental model was formulated to explain the mutagenic interactions that occur between near-UV and various agents that induce prototrophic revertants via error-prone repair of DNA. According to this model, low doses of near-UV provoke conditions for mutation frequency decline (MFD) and lead to a mutagenic antagonism. With increasing near-UV doses, damage to constitutive error-free repair systems increases, favouring the error-prone system and inhibiting the MFD. Under these conditions there will be a progressive decrease in antagonism until at high doses an enhancement of mutation frequency (positive interaction) will occur.  相似文献   

2.
Mutation frequency decline (MFD) is an irreversible loss of newly-induced suppressor mutations occurring in excision-proficient Escherichia coli during a short period of incubation in minimal medium before plating on broth- or Casamino acids-enriched selective agar. It is known that MFD of UV-induced mutations may occur before DNA containing pre-mutagenic lesions is replicated, but we conclude that MFD can also occur after the damaged DNA has been replicated on the basis of the following evidence. (1) Mutation fixation in rich medium (i.e., loss of susceptibility to mutation frequency decline) with ethyl methanesulphonate mutagenesis begins immediately, whereas with UV it is delayed for 20--30 min. (2) The delay in mutation fixation after UV can be explained neither by inhibition of DNA replication nor by a delay in the appearance of error-prone repair activity in the irradiated population. (3) MFD at later times after UV irradiation is more rapid and is less strongly inhibited by caffeine than is MFD immediately after irradiation. (4) Excision is virtually complete 20 min after 3 J m-2 UV but at that time virtually all mutations are still susceptible to MFD. We have presented evidence elsewhere that in bacteria there is an alternative error-free excision-dependent type of post-replication repair of potentially mutagenic daughter strand gaps. We suggest that this process is inhibited at tRNA loci in the presence of nutrient broth or Casamino acids, possibly because of a broth-dependent change in the structure of the single-stranded region including the tRNA locus.  相似文献   

3.
The mutational interaction between radiation at 365 and 254 nm was studied in various strains of E. coli by a mutant assay based on reversion to amino-acid independence in full nutrient conditions. In the two repair-proficient strains (K12 AB 1157 and B/r), pre-treatment with radiation at 365 nm strongly suppressed the induction of mutations by far-UV, a phenomenon accompanied by a strong lethal interaction. The frequency of mutations induced by far-UV progressively declined with increasing dose of near-UV. Far-UV-induced mutagenesis to T5 resistance was almost unaltered by pre-treatment with near-UV. In AB 1886 uvrA there was no lethal interaction between the two wavelengths but the mutagenic interaction was synergistic. This synergism was maximal at a 365-nm dose of 8 X 10(5) J m-2. It is proposed that in the wild-type strain, cells containing potentially mutagenic lesions are selectively eliminated from the population because of abortive excision of an error-prone repair-inducing signal. In excisionless strains, 365-nm radiation may be less damaging to the error-prone than to the error-free post-replication repair system. Alternatively, mutation may be enhanced because of the occurrence of error-prone repair of 365-nm lesions by a system that is not induced in the absence of 254-nm radiation.  相似文献   

4.
Inducible DNA-repair systems in yeast: competition for lesions   总被引:1,自引:0,他引:1  
DNA lesions may be recognized and repaired by more than one DNA-repair process. If two repair systems with different error frequencies have overlapping lesion specificity and one or both is inducible, the resulting variable competition for the lesions can change the biological consequences of these lesions. This concept was demonstrated by observing mutation in yeast cells (Saccharomyces cerevisiae) exposed to combinations of mutagens under conditions which influenced the induction of error-free recombinational repair or error-prone repair. Total mutation frequency was reduced in a manner proportional to the dose of 60Co-gamma- or 254 nm UV radiation delivered prior to or subsequent to an MNNG exposure. Suppression was greater per unit radiation dose in cells gamma-irradiated in O2 as compared to N2. A rad3 (excision-repair) mutant gave results similar to wild-type but mutation in a rad52 (rec-) mutant exposed to MNNG was not suppressed by radiation. Protein-synthesis inhibition with heat shock or cycloheximide indicated that it was the mutation due to MNNG and not that due to radiation which had changed. These results indicate that MNNG lesions are recognized by both the recombinational repair system and the inducible error-prone system, but that gamma-radiation induction of error-free recombinational repair resulted in increased competition for the lesions, thereby reducing mutation. Similarly, gamma-radiation exposure resulted in a radiation dose-dependent reduction in mutation due to MNU, EMS, ENU and 8-MOP + UVA, but no reduction in mutation due to MMS. These results suggest that the number of mutational MMS lesions recognizable by the recombinational repair system must be very small relative to those produced by the other agents. MNNG induction of the inducible error-prone systems however, did not alter mutation frequencies due to ENU or MMS exposure but, in contrast to radiation, increased the mutagenic effectiveness of EMS. These experiments demonstrate that in this lower eukaryote, mutagen exposure does not necessarily result in a fixed risk of mutation, but that the risk can be markedly influenced by a variety of external stimuli including heat shock or exposure to other mutagens.  相似文献   

5.
The effect of caffeine on V-79 Chinese hamster cells after ultraviolet irradiation or treated with ethyl methanesulphonate was investigated. Caffeine strongly potentiated the killing of both agents, but it had no effect on the induction of mutations at the hypoxanthine-guanine phosphoribosyl transferase locus. The results are consistent with the notion that caffeine slows down an error-prone post-replicative repair mechanism without changing the mutation frequency.  相似文献   

6.
Mutagenesis by simple alkylating agents is thought to occur by either a lexA+-dependent process called error-prone repair or a lex-independent process often attributed to mispairing during replication. We show here that error-prone repair is responsible for the majority of mutants formed after a large dose of alkylating agent, but it is unlikely that it contributes significantly to mutagenesis during exposure to low concentrations of these chemicals. The mutagenicity of these low doses of alkylating agent is reduced by a repair system constitutively present in lexA+ cells but absent in lexA mutants. This system reduces mutagenesis until a second error-free system, called the adaptive responses, can be induced [P. Jeggo, M. Defais, L. Samson, and P. Schendel, Mol. Gen. Genet, 157:1-9, 1977; L. Samson and J. Cairns, Nature (London) 267:281-283, 1977]. The adaptive response is capable of dealing with a much larger amount of alkylation damage than the constitutive system and, when induced, appears to be able to reduce mutagenesis by both decreasing the number of sites available for mutagenesis and delaying the induction of error-prone repair enzymes. Finally, we discuss a model of chemically induced mutagenesis based on these findings which maintains that the observed mutation frequency is dependent on a "race" between these two error-free systems and the two mutagenic pathways.  相似文献   

7.
No mutagenicity or an uncertain mutagenic response has been reported in the literature for methyl methanesulphonate (MMS) in S. typhimurium strain TA1535 when using the plate assay. In our studies we found a reproducible mutagenic activity of 62 revertants/mumole and plate for MMS in strain TA1535 when using the preincubation assay. A dose-dependent increase in revertants was, however, observed only at fairly high doses (exceeding 4 mumole). Two different slopes were observed in the dose-response curve when testing MMS with strain TA100. Slope A is dependent on the error-prone response, possible only in strain TA100 due to the pKm101 plasmid (R factor) but not possible in strain TA1535 due to its umuDC deficiency. Slope B observed at higher doses (as in strain TA1535) could be explained through a GC----AT transition initiated by the O6-methylation of guanine. Our findings demonstrate that MMS induces back mutation in S. typhimurium strains carrying the hisG46 missense mutation due to the formation of O6-methylguanine. In the case of strain TA100 the pKm101 plasmid-mediated error-prone mechanism is, however, the predominant process in MMS mutagenesis which leads to a higher mutagenic response at much lower doses than the GT----AT transition in strain TA1535.  相似文献   

8.
Premutational lesions produced by ultraviolet radiation in the Gln2 tRNA genes of E. coli B/r show differing sensitivities to a mutation avoidance phenomenon known as mutation frequency decline (MFD). A mutation event that changes the wild-type gene to an amber (UAG) suppressor is normally sensitive to MFD. Mutation of this amber suppressor to an ochre (UAA) suppressor is not sensitive to MFD. These two mutation events occur in the same anticodon region of the DNA. The dissimilarity of MFD sensitivity between these two mutations may result because the respective premutational photoproducts for the two are located in opposite strands of duplex DNA. To examine the effect of strand position of the premutational lesions on MFD, recombinant lambda phage were constructed that contained the amber suppressor as a mutation target in the two possible orientations. Comparison of MFD in bacterial lysogens containing either of the two types of recombinant prophage indicated that reversing the orientation of the target sequence relative to adjacent bacterial DNA had no effect on MFD. Since rotational inversion of the target sequence did not alter the sensitivity to MFD of mutation occurring at the cloned target gene, the antimutation process inherent to MFD can not be attributed to an asymmetrical interaction between the template strands and the DNA-replication complex.  相似文献   

9.
Summary Ultraviolet radiation produces bacterial revertants that frequently are the result of suppressor mutation. When irradiated cells are incubated under conditions unfavorable for protein synthesis there may be a large decrease in the frequency of observed mutants (mutation frequency decline, or MFD). MFD occurs only in excision-proficient strains and is inhibited by inhibitors of pyrimidine dimer excision. It has therefore been interpreted as enhanced excision of some premutational lesions. Potential de novo UAG suppressor mutation is very susceptible to MFD. Potential conversion mutation, the conversion of a UAG to a UAA suppressor, is at least ten times less susceptible to MFD. A base pair transition at a GC target in a particular tRNA gene is suggested for both de novo suppressor mutation and for conversion mutation. We interpret these results as indicating differential repair of premutational UV photoproducts at two closely spaced sites in the same tRNA gene. The significant difference between these two types of mutation may be the orientation of this target base pair in double helical DNA. The C would be in the transcribed strand of DNA when a nucleic acid alteration produces de novo suppressor mutation. The C would be in the nontranscribed strand, two base pairs removed, when a mutagenic alteration produces suppressor conversion. A model involving facilitated incision by hybridization of the transcribed strand of DNA to its cognate tRNA, under conditions promoting MFD, is described to explain this differential repair.  相似文献   

10.
The inactivation and mutation (to r phenotype) of extracellular coliphage T4 wild-type by the monofunctional alkylating agents N-methyl- and N-ethyl-N-nitrosourea and isopropyl methanesulphonate were investigated. The rate and extent of change in phage infectivity observed during the post-treatment period were found to correlate with what is known of the mechanisms by which these agents react in vitro. Loss of phage infectivity was found to occur during the period following treatment with these agents, but that resulting from treatment with isopropyl methanesulphonate was preceded, in the first 24 to 48 h, by a recovery of infectivity. This suggested that changes in phage infectivity occurring after treatment with monofunctional alkylating agents are resultant of various processes which diversely promote loss and recovery of infectivity. The mutagenicity of N-methyl-N-nitrosourea was similar to that of its ethyl homologue at a level of phage survival of 4 x 10-3, but less than that of isopropyl methanesulphonate. At a level of survival of 3 x 10-2 ethyl methanesulphonate was a mutagenic as its isopropyl homologue, but methyl methanesulphonate was only slightly if at all mutagenic. These results could not be correlated with the compounds' reaction mechanisms. The efficiency of isopropyl methanesulphonate (compared with its toxicity to phage) was found to decrease as the severity of the dose was increased.  相似文献   

11.
The disruption of ung, the unique uracil-DNA-glycosylase-encoding gene in Bacillus subtilis, slightly increased the spontaneous mutation frequency to rifampin resistance (Rif(r)), suggesting that additional repair pathways counteract the mutagenic effects of uracil in this microorganism. An alternative excision repair pathway is involved in this process, as the loss of YwqL, a putative endonuclease V homolog, significantly increased the mutation frequency of the ung null mutant, suggesting that Ung and YwqL both reduce the mutagenic effects of base deamination. Consistent with this notion, sodium bisulfite (SB) increased the Rif(r) mutation frequency of the single ung and double ung ywqL strains, and the absence of Ung and/or YwqL decreased the ability of B. subtilis to eliminate uracil from DNA. Interestingly, the Rif(r) mutation frequency of single ung and mutSL (mismatch repair [MMR] system) mutants was dramatically increased in a ung knockout strain that was also deficient in MutSL, suggesting that the MMR pathway also counteracts the mutagenic effects of uracil. Since the mutation frequency of the ung mutSL strain was significantly increased by SB, in addition to Ung, the mutagenic effects promoted by base deamination in growing B. subtilis cells are prevented not only by YwqL but also by MMR. Importantly, in nondividing cells of B. subtilis, the accumulations of mutations in three chromosomal alleles were significantly diminished following the disruption of ung and ywqL. Thus, under conditions of nutritional stress, the processing of deaminated bases in B. subtilis may normally occur in an error-prone manner to promote adaptive mutagenesis.  相似文献   

12.
radE, a new radiation-sensitive locus in Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Dictyostelium discoideum strain M28, which has been used widely in genetic studies, was found to carry a radiation-sensitive mutation. This allele, termed rad-100, was recessive in heterozygous diploids and mapped in linkage group III. Complementation analysis and survival studies on strains carrying rad-100 suggested that this allele defines a new radiation-sensitive locus in D. discoideum, and this locus has been designated radE. radE strains were moderately sensitive to ultraviolet light (D10 90 J m-2) and slightly sensitive to 137Cs gamma rays D10 255 krad). radE strains also exhibited increased sensitivity to killing by N-methyl-N'-nitro-N-nitrosoguanidine but not by other alkylating agents such as ethyl methanesulphonate or methyl methanesulphonate. The frequency of spontaneous methanol-resistant (acrA) mutants was approximately the same in cultures of radE and radE+ strains. However, when amoebae of these strains were irradiated with ultraviolet light, the frequency of induced mutants was significantly lower in cultures of the radE strain. Furthermore, when amoebae of wild-type strain NC4 were plated in the presence of caffeine after ultraviolet-irradiation, the survival curves were very similar to the curves obtained for amoebae of radE strains in the presence or in the absence of caffeine. These results suggest that the radE100 mutation and caffeine interfere with an error-prone DNA repair pathway in D. discoideum.  相似文献   

13.
The lethal effect of polychromatic near-UV light (325-400 nm) on Haemophilus influenzae was 8 times higher under aerobic than anaerobic irradiation. This light increased the frequency of mutation to novobiocin resistance and ability to utilize protoporphyrin IX. The slope of mutagenic effect at low doses appeared greater for the aerobic than for the anaerobic group. We concluded that polychromatic near-UV mutation of H. influenzae under anaerobic irradiation was caused by direct oxygen-independent action on DNA.  相似文献   

14.
15.
Possible functions of previously described genes RAD29 and RAD31 involved in DNA repair were determined by analyzing the interaction between these genes and mutations in the genes of the three basic epistatic groups: RAD3 (nucleotide excision repair), RAD6 (error-prone mutagenic repair system), RAD52 (recombination repair pathway), and also the apn1 mutation that blocks the synthesis of major AP endonuclease (base excision repair). The results obtained in these studies and the estimation of the capability for excision repair of lesions induced by 8-metoxipsoralen and subsequent exposure to long-wavelength UV light in mutants for these genes led to the assumption that the RAD29 and RAD31 genes are involved in yeast DNA repair control.  相似文献   

16.
Two UV sensitive DNA-repair-deficient mutants of Chinese hamster ovary cells (43-3B and 27-1) have been characterized. The sensitivity of these mutants to a broad spectrum of DNA-damaging agents: UV254nm, 4-nitroquinoline-1-oxide (4NQO), X-rays, bleomycin, ethylnitrosourea (ENU), ethyl methanesulphonate (EMS), methyl methanesulphonate (MMS) and mitomycin C (MMC) has been determined. Both mutants were not sensitive to X-rays and bleomycin. 43-3B was found to be sensitive to 4NQO, MMC and slightly sensitive to alkylating agents. 27-1 was sensitive only to alkylating agents. The results suggest the existence of two repair pathways for UV-induced cytotoxicity: one pathway which is also used for the removal of 4NQO and MMC adducts and a second pathway which is also used for the removal of alkyl adducts. Parallel to the toxicity, the induction of mutations at the HPRT and Na+/K+-ATPase loci was determined. The increased cytotoxicity to UV, MMC and 4NQO in 43-3B cells and the increased cytotoxicity to UV in 27-1 cells correlated with increased mutability. It was observed that the increase in mutation induction at the HPRT locus was higher than that at the Na+/K+-ATPase locus. As only point mutations give rise to viable mutants at the Na+/K+-ATPase locus the lower mutability at this locus suggests that defective excision repair increases the chance for deletions. Despite an increased cytotoxicity to ENU in 27-1 cells the mutation induction by ENU was the same in 27-1 and wild-type cells at both loci, which suggests that the mutations are mainly induced by directly miscoding adducts (e.g. O-6 alkylguanine), which cannot be removed by CHO cells. As EMS and MMS treatment of 27-1 cells caused an increase in mutation induction at the HPRT locus and a decrease at the Na+/K+-ATPase locus it indicates that these agents induce a substantial fraction of other mutagenic lesions, which can be repaired by wild-type cells. This suggests that O-6 alkylation is not the only mutagenic lesion after treatment with alkylating agents.  相似文献   

17.
The ability of DNA excision-repair processes in diploid human fibroblasts to eliminate potentially cytotoxic and mutagenic lesions induced by UV radiation (254 nm) was demonstrated in two ways: (1) Cells with normal rates of excision were compared with cells with an intermediate rate of excision (XP2BE) and cells with an excision rate less than or equal to 1% that of normal (XP12BE) for sensitivity to the killing and mutagenic action of UV radiation. The normal cells proved resistant to doses of UV which reduced the survival of the XP cells to 14% and 0.7%, respectively, and increased the frequency of mutations to 8-azaguanine resistance in the XP cells 5- to 10-fold over background. (2) Cells in confluence were irradiated with cytotoxic and mutagenic doses of UV and allowed to carry out excision repair. After various lengths of time they were replated at lower densities to allow for expression of mutations to 6-thioguanine resistance and/or at cloning densities to assay survival. Normal cells and XP cells with reduced rates of excision repair (from complementation groups C and D) exhibited a gradual increase in survival from an initial level of 15--20% to 100% if held approximately 20 h in confluence. In contrast, XP12BE cells showed no increase from an initial survival of 20% even when held for 7 days. Normal cells irradiated in confluence but prevented from replicating for 7 days exhibited background mutation frequencies, whereas the mutation frequency in XP12BE cells did not change with the time in confluence.  相似文献   

18.
The frequency of UV-induced extragenic suppressor reversions to leucine independence in B. subtilis carrying a leu8 mutation decreased when irradiated cells were temporarily incubated in medium deprived of nitrogen sources. This mutation frequency decline (MFD) was inhibited by acriflavine and was poorly expressed in a uvr1 mutant. Consequently, MFD may be considered as the manifestation of an anti-mutagenic activity of excision repair. MFD was decelerated and even vanished in cells subjected to prolonged starvation of nitrogen sources before irradiation. MFD was accelerated in bacteria that were first irradiated and incubated in nutritional medium for at least 30 min. The stimulation of MFD by UV exposure was observed only in the uvr+ strain and depended on protein synthesis after irradiation. It is assumed that different rates of MFD in cells of various pre-radiation histories reflect different levels of the excision-repair activity inherent in these cells.  相似文献   

19.
Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficient TSL takes place. The aim of this work was to estimate the involvement of SOS-inducible DNA polymerases, Pol II, Pol IV and Pol V, in UV mutagenesis and in mutation frequency decline (MFD), a mechanism of repair of UV-induced damage to DNA under conditions of arrested protein synthesis. Using the argE3-->Arg(+) reversion to prototrophy system in E. coli AB1157, we found that the umuDC-encoded Pol V is the only SOS-inducible polymerase required for UV mutagenesis, since in its absence the level of Arg(+) revertants is extremely low and independent of Pol II and/or Pol IV. The low level of UV-induced Arg(+) revertants observed in the AB1157mutD5DumuDC strain indicates that under conditions of disturbed proofreading activity of Pol III and lack of Pol V, UV-induced lesions are bypassed without inducing mutations. The presented results also indicate that Pol V may provide substrates for MFD repair; moreover, we suggest that only those DNA lesions which result from umuDC-directed UV mutagenesis are subject to MFD repair.  相似文献   

20.
Survival and mutation to thioguanine resistance were measured in V79-4 hamster cells grown to plateau phase without refeeding and irradiated with 60Co gamma rays. The effects of low-dose-rate irradiation and of postirradiation holding on recovery from gamma-ray damage leading to these two responses were also studied. The responses of these plateau (extended G1)-phase cells to acute irradiation were similar to those we previously found for exponentially growing cells, including the linear relationship between induced mutant frequency and (log) surviving fraction. Irradiation at low dose rate (0.34 rad/min) considerably reduced both the lethal and mutagenic effects of given doses of gamma rays, but the linear mutation-survival relationship was approximately the same as for acute irradiation. In contrast, cells given a 5-hr holding period after acute irradiation showed the anticipated recovery from potentially lethal damage but no recovery from damage leading to mutation. These results are discussed in terms of previously proposed cellular repair processes (sublethal damage repair and potentially lethal damage repair) and the possibility that the radiation damage leading to lethality is different from mutagenic damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号