首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the role of Ca2+ in generating reactive oxygen species (ROS) induced by hyposmotic stress (Hypo) and its relationship to regulatory volume decrease (RVD) in cardiomyocytes. Hypo-induced increases in cytoplasmic and mitochondrial Ca2+. Nifedipine (Nife) inhibited both Hypo-induced Ca2+ and ROS increases. Overexpression of catalase (CAT) induced RVD and a decrease in Hypo-induced blebs. Nife prevented CAT-dependent RVD activation. These results show a dual role of Hypo-induced Ca2+ influx in the control of cardiomyocyte viability. Hypo-induced an intracellular Ca2+ increase which activated RVD and inhibited necrotic blebbing thus favoring cell survival, while simultaneously increasing ROS generation, which in turn inhibited RVD and induced necrosis.  相似文献   

2.
3.
The sulfhydryl group reagent N-ethylmaleimide was found to inhibit in a dose dependent manner regulatory volume decrease of human peripheral lymphocytes swollen in buffered hyposmotic NaCl media. In hyposmotic KCl media NEM treated lymphocytes prevented an additional secondary swelling seen in control lymphocytes. The data suggest that N-ethylmaleimide acts on ion transport mechanisms involved in volume regulatory changes. This effect contrasts with the stimulation by N-ethylmaleimide of apparently volume sensitive K/Cl fluxes in certain mammalian red cells.  相似文献   

4.
Apoptosis of cardiomyocytes following ischemia and Apoptosis of cardiomyocytes following ischemia and known about the mechanism by which it is induced. Recently, essential roles of a Cl- channel whose activity triggers the apoptotic volume decrease and of reactive oxygen species (ROS) in activation of this channel have been identified in mitochondrion-mediated apoptosis. Therefore, in this study, involvement of Cl- channels and ROS in apoptosis was studied in primary mouse cardiomyocyte cultures subjected to ischemia-reperfusion. Apoptotic cell death as measured by caspase-3 activation, chromatin condensation, DNA laddering, and cell viability reduction was observed tens of hours after reperfusion but never immediately after ischemia. A non-selective Cl-channel blocker (DIDS or NPPB) rescued cells from apoptotic death when applied during the reperfusion, but not ischemia, period. Another blocker relatively specific to the volume-sensitive outwardly rectifying (VSOR) Cl-channel (phloretin) was also effective in protecting ischemic cardiomyocytes from apoptosis induced by reperfusion. A profound increase in intracellular ROS was detected in cardiomyocytes during the reperfusion, but not ischemia, period. Scavengers for ROS, H2O2 and superoxide all inhibited apoptosis induced by ischemia-reperfusion. Thus, it is concluded that the mechanism by which cardiomyocyte apoptosis is induced by ischemia-reperfusion involves VSOR Cl- channel activity and intracellular ROS production.  相似文献   

5.
An apoptotic model for nitrosative stress   总被引:5,自引:0,他引:5  
Eu JP  Liu L  Zeng M  Stamler JS 《Biochemistry》2000,39(5):1040-1047
Nitric oxide overproduction has been implicated in the pathogenesis of many disorders, including artherosclerosis, neurodegenerative diseases, inflammatory and autoimmune diseases, and cancer. The common view holds that nitric oxide-induced cellular injury is caused by oxidative stress. This theory predicts that interactions between reactive nitrogen species and reactive oxygen species produce powerful oxidants that initiate cell death programs. Cytokine-treated murine macrophages are the prototype of this form of cellular injury. Here we report that generation of reactive nitrogen species upon lipopolysacharide/interferon-gamma stimulation of RAW 264.7 cells is largely divorced from production of reactive oxygen species, and that oxidative stress is not principally responsible for cell death (in this model). Rather, the death program is induced mainly by a nitrosative challenge, characterized by the accrual of nitrosylated proteins without a major alteration in cellular redox state. Moreover, interactions between reactive oxygen and nitrogen species may alter the balance between pathways that yield nitrite and nitrate, without impacting the level of S-nitrosylation or extent of cell death. Our results thus (1) provide new insights into NO-related metabolic pathways, (2) demonstrate that apoptotic injury can be caused by nitrosative mechanisms, and (3) establish a model for nitrosative stress in mammalian cells.  相似文献   

6.
Ischemia-reperfusion injury induces oxidant stress, and the burst of reactive oxygen species (ROS) production after reperfusion of ischemic myocardium is sufficient to induce cell death. Mitochondrial oxidant production may begin during ischemia prior to reperfusion because reducing equivalents accumulate and promote superoxide production. We utilized a ratiometric redox-sensitive protein sensor (heat shock protein 33 fluorescence resonance energy transfer (HSP-FRET)) to assess oxidant stress in cardiomyocytes during simulated ischemia. HSP-FRET consists of the cyan and yellow fluorescent protein fluorophores linked by the cysteine-containing regulatory domain from bacterial HSP-33. During ischemia, ROS-mediated oxidation of HSP-FRET was observed, along with a decrease in cellular reduced glutathione levels. These findings were corroborated by measurements using redox-sensitive green fluorescent protein, another protein thiol ratiometric sensor, which became 93% oxidized by the end of simulated ischemia. However, cell death did not occur during ischemia, indicating that this oxidant stress is not sufficient to induce death before reperfusion. However, interventions that attenuate ischemic oxidant stress, including antioxidants or scavengers of residual O(2) that attenuate/prevent ROS generation during ischemia, abrogated cell death during simulated reperfusion. These findings reveal that, in isolated cardiomyocytes, sublethal H(2)O(2) generation during simulated ischemia regulates cell death during simulated reperfusion, which is mediated by the reperfusion oxidant burst.  相似文献   

7.
We have recently shown that hyperosmotic stress activates p65/RelB NFkappaB in cultured cardiomyocytes with dichotomic actions on caspase activation and cell death. It remains unexplored how NFkappaB is regulated in cultured rat cardiomyocytes exposed to hyperosmotic stress. We study here: (a) if hyperosmotic stress triggers reactive oxygen species (ROS) generation and in turn whether they regulate NFkappaB and (b) if insulin-like growth factor-1 (IGF-1) modulates ROS production and NFkappaB activation in hyperosmotically-stressed cardiomyocytes. The results showed that hyperosmotic stress generated ROS in cultured cardiac myocytes, in particular the hydroxyl and superoxide species, which were inhibited by N-acetylcysteine (NAC). Hyperosmotic stress-induced NFkappaB activation as determined by IkappaBalpha degradation and NFkappaB DNA binding. NFkappaB activation and procaspase-3 and -9 fragmentation were prevented by NAC and IGF-1. However, this growth factor did not decrease ROS generation induced by hyperosmotic stress, suggesting that its actions over NFkappaB and caspase activation may be due to modulation of events downstream of ROS generation. We conclude that hyperosmotic stress induces ROS, which in turn activates NFkappaB and caspases. IGF-1 prevents NFkappaB activation by a ROS-independent mechanism.  相似文献   

8.
Taurine concentration was reduced by 40 and 65%, respectively in rat cerebellar astrocytes grown in a chemically defined medium or in culture medium containing a blocker of taurine transport (GES). Cell volume in these taurine deficient cells was 10%–16% higher than in controls. When challenged by hyposmotic conditions, astrocytes release taurine and this efflux contributes to the volume regulatory decrease observed in these cells. Taurine deficient astrocytes showed a less efficient volume recovery as compared to controls with normal taurine levels. Exposed to 50% hyposmotic medium, astrocytes with normal taurine concentration recovered 60% of their original volume whereas taurine deficient cells recovered only 30–35%. Similarly, in 30% hyposmotic medium, taurine deficient astrocytes recovered only 40% as compared to 75% in controls. No compensatory increases in the efflux of other osmolytes (free amino acids or potassium) were observed during regulatory volume decrease in taurine deficient astrocytes.  相似文献   

9.
10.
Molecular mechanisms of β-amyloid toxic effect on brain cells during Alzheimer’s disease is associated with oxidative stress, intracellular Ca2+ increase in neurons and astrocytes and activation of reactive oxygen species production. Prion protein is known to be involved in beta-amyloid toxicity. Here we investigated an effect of affinity purified antibodies to synthetic fragment 95–123 of the prion protein (PrP-(95–123)) on β-amyloid induced cell death, Ca2+-signal, reactive oxygen species production and caspase 3 activation. We have shown that antibodies to PrP-(95–123) are able to protect neurons and astrocytes from beta-amyloid induced cell death with no effect on the intracellular Ca2+ concentration altered by beta-amyloid treatment. However, the antibodies significantly reduced β-amyloid induced reactive oxygen species production in astrocytes and decreased caspase 3 activation in neurons and astrocytes. Thus, induction of antibodies to PrP-(95–123) of the prion protein provides a new approach to anti-Alzheimer’s disease vaccine design.  相似文献   

11.
Membrane transport changes in human lens epithelial (HLE‐B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, Ki, uptake of the K congener rubidium, Rbi, and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein‐kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2‐fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% Ki loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of Ki, and accompanying water, and Rbi uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 µM STP exposure, the cells lost ~40% water and ~60% Ki, respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and Ki loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4‐aminopyridine (4‐AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE‐B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro‐apoptotic STP‐activation of 4‐AP‐sensitive voltage‐gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110–122, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
For animal cell plasma membranes, the permeability of water is much higher than that of ions and other solutes, and exposure to hyposmotic conditions almost invariably causes rapid water influx and cell swelling. In this situation, cells deploy regulatory mechanisms to preserve membrane integrity and avoid lysis. The phenomenon of regulatory volume decrease, the partial or full restoration of cell volume following cell swelling, is well-studied in mammals, with uncountable investigations yielding details on the signaling network and the effector mechanisms involved in the process. In comparison, cells from other vertebrates and from invertebrates received little attention, despite of the fact that e.g. fish cells could present rewarding model systems given the diversity in ecology and lifestyle of this animal group that may be reflected by an equal diversity of physiological adaptive mechanisms, including those related to cell volume regulation. In this review, we therefore present an overview on the most relevant aspects known on hypotonic volume regulation presently known in fish, summarizing transporters and signaling pathways described so far, and then focus on an aspect we have particularly studied over the past years using fish cell models, i.e. the role of extracellular nucleotides in mediating cell volume recovery of swollen cells. We, furthermore, present diverse modeling approaches developed on the basis of data derived from studies with fish and other models and discuss their potential use for gaining insight into the theoretical framework of volume regulation.  相似文献   

13.
Cultured chick embryo cardiac myocytes submitted to a 180 mOsm/kg hyposmotic solution swell present a regulatory volume decrease (RVD). This RVD is mediated by a Ca(2+)influx followed by a 40% loss of total taurine content accompanied by the loss of lesser amounts of other osmolytes. Kidney cells respond to a gradual change in osmolality by maintaining their volume at the initial level. This is termed isovolumetric regulation (IVR), which may activate regulatory processes other than those observed with sudden changes in osmolality. When cardiac myocytes were exposed to a gradual change in osmolality, they show a partial IVR which is not dependent upon extracellular Ca(2+). Potassium channel blockers, quinidine and Ba(2+), and the chloride channel blocker, diphenylamine-2-carboxylate (DPC), compromise IVR in our model. Tritiated taurine loss and total intracellular K(+)contents were analyzed in cultured cardiomyocytes submitted to a gradual change in osmolality. The cultured cells lost approximately 10% of their taurine and 35% of their total K(+). These findings suggest that different compensatory mechanisms are activated when cells are exposed to stepwise and gradual changes in osmolality. Inorganic osmolytes (through conductive pathways) are preferentially mobilized during the physiological and/or patho-physiological IVR situation, perhaps reflecting energetic conservation in response to a less traumatic event for the cardiac myocytes.  相似文献   

14.
To ensure that a constant number of T cells are preserved in the peripheral lymphoid organs, the production and proliferation of T cells must be balanced out by their death. Newly generated T cells exit the thymus and are maintained as resting T cells. Transient disruption of homeostasis occurs when naïve T cells undergo antigen-induced expansion, a process involving intracellular signaling events that lead to T cell proliferation, acquisition of effector functions, and, ultimately, either apoptosis or differentiation into long-lived memory cells. The last decision point (death vs. differentiation) is a crucial one: it resets lymphoid homeostasis, promotes protective immunity, and limits autoimmunity. Despite its importance, relatively little is known about the molecular mechanisms involved in this cell fate decision. Although multiple mechanisms are likely involved, recent data suggest an underlying regulatory role for reactive oxygen species in controlling the susceptibility of T cells to apoptosis. This review focuses on recent advances in our understanding of how reactive oxygen species modulate T-cell apoptosis.  相似文献   

15.
Oxidative stress is linked to many pathological conditions, including ischemia, atherosclerosis and neurodegenerative disorders. The molecular mechanisms of oxidative stress induced pathophysiology and cell death are currently poorly understood. Our present work demonstrates that oxidative stress induced by reactive oxygen species and cigarette smoke extract depolarize the cell membrane and open connexin hemichannels. Under oxidative stress, connexin expression and connexin silencing resulted in increased and reduced cell deaths, respectively. Morphological and live/dead assays indicate that cell death is likely through apoptosis. Our studies provide new insights into the mechanistic role of hemichannels in oxidative stress induced cell injury.  相似文献   

16.
We investigated the ability of pyrroloquinoline quinone (PQQ) to confer resistance to acute oxidative stress in freshly isolated adult male rat cardiomyocytes. Fluorescence microscopy was used to detect generation of reactive oxygen species (ROS) and mitochondrial membrane potential (Deltapsi(m)) depolarization induced by hydrogen peroxide. H(2)O(2) caused substantial cell death, which was significantly reduced by preincubation with PQQ. H(2)O(2) also caused an increase in cellular ROS levels as detected by the fluorescent indicators CM-H2XRos and dihydroethidium. ROS levels were significantly reduced by a superoxide dismutase mimetic Mn (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) or by PQQ treatment. Cyclosporine-A, which inhibits mitochondrial permeability transition, prevented H(2)O(2)-induced Deltapsi(m) depolarization, as did PQQ and MnTBAP. Our results provide direct evidence that PQQ reduces oxidative stress, mitochondrial dysfunction, and cell death in isolated adult rat cardiomyocytes. These findings provide new insight into the mechanisms of PQQ action in the heart.  相似文献   

17.
Cellular oxidative stress results from the increased generation of reactive oxygen species and/or the dysfunction of the antioxidant systems. Most intracellular reactive oxygen species derive from superoxide radical although the majority of the biological effects of reactive oxygen species are mediated by hydrogen peroxide. In this contribution we overview the major cellular sites of reactive oxygen species production, with special emphasis in the mitochondrial pathways. Reactive oxygen species regulate signaling pathways involved in promoting survival and cell death, proliferation, metabolic regulation, the activation of the antioxidant response, the control of iron metabolism and Ca2 + signaling. The reversible oxidation of cysteines in transducers of reactive oxygen species is the primary mechanism of regulation of the activity of these proteins. Next, we present the mitochondrial H+-ATP synthase as a core hub in energy and cell death regulation, defining both the rate of energy metabolism and the reactive oxygen species-mediated cell death in response to chemotherapy. Two main mechanisms that affect the expression and activity of the H+-ATP synthase down-regulate oxidative phosphorylation in prevalent human carcinomas. In this context, we emphasize the prominent role played by the ATPase Inhibitory Factor 1 in human carcinogenesis as an inhibitor of the H+-ATP synthase activity and a mediator of cell survival. The ATPase Inhibitory Factor 1 promotes metabolic rewiring to an enhanced aerobic glycolysis and the subsequent production of mitochondrial reactive oxygen species. The generated reactive oxygen species are able to reprogram the nucleus to support tumor development by arresting cell death. Overall, we discuss the cross-talk between reactive oxygen species signaling and mitochondrial function that is crucial in determining the cellular fate. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

18.
During the last years, several reports described an apoptosis-like programmed cell death process in yeast in response to different environmental aggressions. Here, evidence is presented that hyperosmotic stress caused by high glucose or sorbitol concentrations in culture medium induces in Saccharomyces cerevisiae a cell death process accompanied by morphological and biochemical indicators of apoptotic programmed cell death, namely chromatin condensation along the nuclear envelope, mitochondrial swelling and reduction of cristae number, production of reactive oxygen species and DNA strand breaks, with maintenance of plasma membrane integrity. Disruption of AIF1 had no effect on cell survival, but lack of Yca1p drastically reduced metacaspase activation and decreased cell death indicating that this death process was associated to activation of this protease. Supporting the involvement of mitochondria and cytochrome c in caspase activation, the mutant strains cyc1Deltacyc7Delta and cyc3Delta, both lacking mature cytochrome c, displayed a decrease in caspase activation associated to increased cell survival when exposed to hyperosmotic stress. These findings indicate that hyperosmotic stress triggers S. cerevisiae into an apoptosis-like programmed cell death that is mediated by a caspase-dependent mitochondrial pathway partially dependent on cytochrome c.  相似文献   

19.
Methyl jasmonate (MeJa) is a well-known plant stress hormone. Upon exposure to stress, MeJa is produced and causes activation of programmed cell death (PCD) and defense mechanisms in plants. However, the early events and the signaling mechanisms of MeJa-induced cell death have yet to be fully elucidated. To obtain some insights into the early events of this cell death process, we investigated mitochondrial dynamics, chloroplast morphology and function, production and localization of reactive oxygen species (ROS) at the single-cell level as well as photosynthetic capacity at the whole-seedling level under MeJa stimulation. Our results demonstrated that MeJa induction of ROS production, which first occurred in mitochondria after 1 h of MeJa treatment and subsequently in chloroplasts by 3 h of treatment, caused a series of alterations in mitochondrial dynamics including the cessation of mitochondrial movement, the loss of mitochondrial transmembrane potential (MPT), and the morphological transition and aberrant distribution of mitochondria. Thereafter, photochemical efficiency dramatically declined before obvious distortion in chloroplast morphology, which is prior to MeJa-induced cell death in protoplasts or intact seedlings. Moreover, treatment of protoplasts with ascorbic acid or catalase prevented ROS production, organelle change, photosynthetic dysfunction and subsequent cell death. The permeability transition pore inhibitor cyclosporin A gave significant protection against MPT loss, mitochondrial swelling and subsequent cell death. These results suggested that MeJa induces ROS production and alterations of mitochondrial dynamics as well as subsequent photosynthetic collapse, which occur upstream of cell death and are necessary components of the cell death process.  相似文献   

20.
High concentrations of cryoprotective agents (CPA) are required during articular cartilage cryopreservation but these CPAs can be toxic to chondrocytes. Reactive oxygen species have been linked to cell death due to oxidative stress. Addition of antioxidants has shown beneficial effects on chondrocyte survival and functions after cryopreservation. The objectives of this study were to investigate (1) oxidative stress experienced by chondrocytes and (2) the effect of antioxidants on cellular reactive oxygen species production during articular cartilage exposure to high concentrations of CPAs. Porcine cartilage dowels were exposed to a multi-CPA solution supplemented with either 0.1 mg/mL chondroitin sulfate or 2000 μM ascorbic acid, at 4 °C for 180 min (N = 7). Reactive oxygen species production was measured with 5 μM dihydroethidium, a fluorescent probe that targets reactive oxygen species. The cell viability was quantified with a dual cell membrane integrity stain containing 6.25 μM Syto 13 + 9 μM propidium iodide using confocal microscopy. Supplementation of CPA solutions with chondroitin sulfate or ascorbic acid resulted in significantly lower dihydroethidium counts (p < 0.01), and a lower decrease in the percentage of viable cells (p < 0.01) compared to the CPA-treated group without additives. These results indicated that reactive oxygen species production is induced when articular cartilage is exposed to high CPA concentrations, and correlated with the amount of dead cells. Both chondroitin sulfate and ascorbic acid treatments significantly reduced reactive oxygen species production and improved chondrocyte viability when articular cartilage was exposed to high concentrations of CPAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号