首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Craniometric measurements from a three-dimensional (3-D) digitizing system were compared with those from sliding and spreading calipers. The 3-D system consisted of a 3-Space Digitizer, Macintosh Plus computer, and Unigraphics CAD/CAM system. Twenty-nine standard measurements were made and repeated on two normal and three deformed skulls. The percentage of difference was calculated for original versus repeat measures and caliper versus 3-D measures. For objective anatomic structures and fiducial points, there was less than 2 mm (maximum) of difference between 1) the original digitizer versus repeat 3-D measures and 2) caliper versus 3-D measures. This represented 2% or less measurement incongruence. There were no significant differences for these comparisons (p greater than 0.1), and all regressions were highly significant (P less than 0.001), with r2 greater than 0.999. 3-D measurements were made more easily and quickly than were caliper measurements, with no loss in precision. It is concluded that 3-D measurements are equivalent in quality to caliper measurements for craniometric studies, but are easier to obtain.  相似文献   

2.
The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members.  相似文献   

3.
A novel research system has been designed to permit three-dimensional (3-D) viewing of high resolution image data from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The system consists of front-end primary data acquisition devices, such as TEM and SEM machines, which are equipped with computer-controlled specimen tilt stages. The output from these machines is in analogue form, where a video camera attached to the TEM provides the sequential analogue image output while the SEM direct video output is utilized. A 10 MHz digitizer transforms the video image to a digital array of 512 X 512 pixel units of 8 bits deep-stored in a frame buffer. Digital images from multiple projections are reconstructed into 3-D image boxes in a dedicated computer. Attached to the computer is a powerful true 3-D display device which has hardware for graphic manipulations including tilt and rotate on any axis and for probing the image with a 3-D cursor. Data editing and automatic contouring functions are used to enhance areas of interest, and specialized software is available for measurement of numbers, distances, areas, and volumes. With proper archiving of reconstructed image sequences, a dynamic 3-D presentation is possible. The microtomography system is highly versatile and can process image data on-line or from remote sites from which data records would typically be transported on computer tape, video tape, or floppy disk.  相似文献   

4.
The reconstructions of three-dimensional (3-D) objects from serial two-dimensional (2-D) images can contribute to the understanding of many biologic structures, from organelles to organs and tissues. The 3-D reconstruction of sections can be divided into several major tasks: image acquisition, alignment of slices, internal object definition, object reconstruction and rotation of the completed image. A fast, versatile, interactive system was devised for the reconstruction of 3-D objects from serial 2-D images using a low-cost microcomputer, original programs and commercial software. The system allows reconstruction from any serial images, e.g., electron micrographs, histologic sections or computed tomograms. A photographic image or a microscopic field is acquired into the computer memory using a video digitizer. Slices are superimposed and aligned to each other using an operator-interactive program. A contour-(edge-) finding algorithm isolates an object of interest from the background image by "subtraction" of the image from an overlaid, slightly shifted identical image. Contours for each slice are input to a reconstruction procedure, which calculates the x, y and z coordinates of every point in a slice and the thickness and number of slices. It then calculates the illumination for every point using a given point source of light and an intensity-fading coefficient. Finally, the points are represented by cubes to provide dimension and reflective surfaces. A cube of appropriate shade and color represents in 2-D the equivalent of a 3-D object; this results in a very effective 3-D image. The reconstruction is rotated by recalculating the positions of every point defining the object and rebuilding the image.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

6.
So far only the detection of 14-3-3 proteins in cerebrospinal fluid (CSF) is included in the diagnostic criteria for sporadic Creutzfeldt-Jakob disease (sCJD). However, this assay cannot be used for screening because of the high rate of false positive results in sCJD, and often negative results in variant CJD. To facilitate the differential diagnosis of CJD, we applied 2-D differential gel-electrophoresis (2-D DIGE) as a quantitative proteomic screening system for CSF proteins. We compared 36 patients suffering from sCJD with 30 patients suffering from other neurodegenerative diseases. Sample preparation was optimized in consideration of the fact that CSF is composed of blood- and brain-derived proteins, and an improved 2-D DIGE protocol was established. Using this method in combination with protein identification by MALDI-TOF-MS, several known surrogate markers of sCJD like 14-3-3 protein, neuron-specific enolase, and lactate dehydrogenase were readily identified. Moreover, a not yet identified protein with an approximate molecular mass of 85 kDa was found as marker for sCJD with high diagnostic specificity and sensitivity. We conclude that our proteomic approach is useful to differentiate CJD from other neurodegenerative diseases and expect that CSF-optimized 2-D DIGE will find broad application in the search for other brain derived proteins in CSF.  相似文献   

7.
Physical phantom models have conventionally been used to determine the accuracy and precision of radiostereometric analysis (RSA) in various orthopaedic applications. Using a phantom model of a fracture of the distal radius it has previously been shown that RSA is a highly accurate and precise method for measuring both translation and rotation in three-dimensions (3-D). The main shortcoming of a physical phantom model is its inability to mimic complex 3-D motion. The goal of this study was to create a realistic computer model for preoperative planning of RSA studies and to test the accuracy of RSA in measuring complex movements in fractures of the distal radius using this new model. The 3-D computer model was created from a set of tomographic scans. The simulation of the radiographic imaging was performed using ray-tracing software (POV-Ray). RSA measurements were performed according to standard protocol. Using a two-part fracture model (AO/ASIF type A2), it was found that for simple movements in one axis, translations in the range of 25microm-2mm could be measured with an accuracy of +/-2microm. Rotations ranging from 16 degrees to 2 degrees could be measured with an accuracy of +/-0.015 degrees . Using a three-part fracture model the corresponding values of accuracy were found to be +/-4microm and +/-0.031 degrees for translation and rotation, respectively. For complex 3-D motion in a three-part fracture model (AO/ASIF type C1) the accuracy was +/-6microm for translation and +/-0.120 degrees for rotation. The use of 3-D computer modelling can provide a method for preoperative planning of RSA studies in complex fractures of the distal radius and in other clinical situations in which the RSA method is applicable.  相似文献   

8.
Low-cost two-dimensional gel densitometry   总被引:1,自引:0,他引:1  
A major obstacle to full utilization of the powerful technique of two-dimensional (2-D) gel electrophoresis is the expense and complexity of quantifying the results. Using an analog-to-digital converter already present in the widely available Commodore 64 or Commodore 128 microcomputer, we have developed a 2-D gel densitometer (GELSCAN) which adds only $20.00 to the cost of the Commodore system (currently around $700.00). The system is designed to work with autoradiograms of 2-D gels. Spots of interest are identified visually and then positioned manually over a light source. A pinhole photoelectric sensor mounted in a hand-held, Plexiglas holder, or "mouse," is briefly rubbed over each spot. Maximum density of the spot is determined and its value is converted to counts per minute via an internal calibration curve which corrects for the nonlinear response of film to radiation. Local spot backgrounds can be subtracted and values can be normalized between gels to adjust for variation in amount of radioactivity applied or in exposure time. Reproducibility is excellent and the technique has some practical as well as theoretical advantages over other more complicated approaches to 2-D gel densitometry. In addition, the GELSCAN system can also be used for scanning individual bands in 1-D gels, quantitation of "dot-blot" autoradiograms and other tasks involving transmission densitometry.  相似文献   

9.
Veeser S  Dunn MJ  Yang GZ 《Proteomics》2001,1(7):856-870
In proteomic research, two-dimensional electrophoresis (2-D) is an important tool for investigating differential patterns of qualitative and quantitative protein expression. The strength of the technique is due to its unrivalled power of being able to separate simultaneously thousands of proteins. The key to the comparison of 2-D protein profiles, however, lies in the use of a fast and robust image matching process which is essential to the subsequent quantification procedure. To satisfy the growing demand for a robust and fully automatic method of matching 2-D gel protein separation profiles, we describe in this paper a novel registration technique based on image intensity distribution rather than selected features. The method uses a multiresolution representation of the gel profiles and exploits the fact that coarse approximations to the optimal matching can be extracted efficiently from low-resolution images. This permits the removal of misalignments at different scales in a systematic manner and the strength of the new method has been confirmed by a double blind trial of 111 2-D gel pairs. The proposed method requires neither landmarks nor an a priori image alignment, and takes about five seconds for processing a typical gel pair on a standard personal computer.  相似文献   

10.
The present work is a preliminary step towards dynamic 3-D modelling by computer graphics simulation of the structure of normal and pathological epithelia, using an expert system. In its present state, Esexsy (Epithelium Simulation by EXpert SYstem) allows the construction, through iterative steps, of a simple 3-D representation of the nasal epithelium, based on the positions, sizes and shapes of nuclei. The iterative process is based on statistical comparisons between distributions of parameter values calculated from real (2-D) histological sections and those issued from an equivalent computer 'section' through the simulated 3-D image. We show the results of attempts at simulating normal, metaplastic and dysplastic states of the nasal epithelium, the latter two being characterized by a progressive architectural disorganization, accompanied by nuclear size/shape alterations. The representation takes into account the size, shape, orientation and spatial arrangement of nuclei, with one or several layers from the basal lamina to the lumen. A modified Poisson point process is used at present to position the nuclei, which are modelled by bi-axial spheroids (from prolate to oblate through spherical), with random orientation and size/shape deviations. It should be possible to use the same computer program to simulate other types of epithelia and to achieve increasingly realistic representations by incorporating, notably, nuclear deformations and chromatin texture.  相似文献   

11.
We describe an algorithm for simultaneous refinement of a three-dimensional (3-D) density map and of the orientation parameters of two-dimensional (2-D) projections that are used to reconstruct this map. The application is in electron microscopy, where the 3-D structure of a protein has to be determined from a set of 2-D projections collected at random but initially unknown angles. The design of the algorithm is based on the assumption that initial low resolution approximation of the density map and reasonable guesses for orientation parameters are available. Thus, the algorithm is applicable in final stages of the structure refinement, when the quality of the results is of main concern. We define the objective function to be minimized in real space and solve the resulting nonlinear optimization problem using a Quasi-Newton algorithm. We calculate analytical derivatives with respect to density distribution and the finite difference approximations of derivatives with respect to orientation parameters. We demonstrate that calculation of derivatives is robust with respect to noise in the data. This is due to the fact that noise is annihilated by the back-projection operations. Our algorithm is distinguished from other orientation refinement methods (i) by the simultaneous update of the density map and orientation parameters resulting in a highly efficient computational scheme and (ii) by the high quality of the results produced by a direct minimization of the discrepancy between the 2-D data and the projected views of the reconstructed 3-D structure. We demonstrate the speed and accuracy of our method by using simulated data.  相似文献   

12.
利用共聚焦显微镜系统进行视觉显微结构的三维重建   总被引:1,自引:1,他引:0  
本文介绍利用共聚焦激光扫描显微镜系统进行的三种动物视觉显微结构的三维重建.所重建的对象为鸽视顶盖的神经元,蜻蜒小眼的晶锥和蟾蜍两个视顶盖之间的纤维联接结构.通过对约60μm厚的样品的共聚焦激光扫描,得到了1和3μm厚的连续光学切面的图象.利用计算机对这些图象进行三维重建得到的模型富有实体感和体视感,特别是以荧光染料标记的样品其三维重建结果比预料的好.三维重建的结果首次展示了这三种视觉显微结构的三维形态,这对进一步研究视觉显微结构的定量形态学和结构功能关系有重要意义,特别是这种装置能研究活组织的三维构型.对该系统的原理和优良性能也作了介绍.  相似文献   

13.
The development and validation of reliable in vitro methods alternative to conventional in vivo studies in experimental animals is a well-recognised priority in the fields of pharmaco-toxicology and food research. Conventional studies based on two-dimensional (2-D) cell monolayers have demonstrated their significant limitations: the chemically and spatially defined three-dimensional (3-D) network of extracellular matrix components, cell-to-cell and cell-to-matrix interactions that governs differentiation, proliferation and function of cells in vivo is, in fact, lost under the simplified 2-D condition. Being able to reproduce specific tissue-like structures and to mimic functions and responses of real tissues in a way that is more physiologically relevant than what can be achieved through traditional 2-D cell monolayers, 3-D cell culture represents a potential bridge to cover the gap between animal models and human studies. This article addresses the significance and the potential of 3-D in vitro systems to improve the predictive value of cell-based assays for safety and risk assessment studies and for new drugs development and testing. The crucial role of tissue engineering and of the new microscale technologies for improving and optimising these models, as well as the necessity of developing new protocols and analytical methods for their full exploitation, will be also discussed.  相似文献   

14.
Chaotic dynamics generated in a chaotic neural network model are applied to 2-dimensional (2-D) motion control. The change of position of a moving object in each control time step is determined by a motion function which is calculated from the firing activity of the chaotic neural network. Prototype attractors which correspond to simple motions of the object toward four directions in 2-D space are embedded in the neural network model by designing synaptic connection strengths. Chaotic dynamics introduced by changing system parameters sample intermediate points in the high-dimensional state space between the embedded attractors, resulting in motion in various directions. By means of adaptive switching of the system parameters between a chaotic regime and an attractor regime, the object is able to reach a target in a 2-D maze. In computer experiments, the success rate of this method over many trials not only shows better performance than that of stochastic random pattern generators but also shows that chaotic dynamics can be useful for realizing robust, adaptive and complex control function with simple rules.  相似文献   

15.
It has been reported that 3-D cultures of hepatocytes or HepG2 cells were less susceptible to methotrexate (MTX) than their 2-D counterparts. Such a mechanism was addressed in this study by investigation of MTX hepatotoxicity in gel entrapped (3-D) rat hepatocytes vs. traditional monolayer culture (2-D). Similarly, gel entrapped hepatocytes showed higher drug resistance to MTX than hepatocyte monolayers in whatever culture medium with or without modification by hormone supplements (dexamethasone, glucagon and insulin). It was also found that medium modification by hormones greatly increased drug resistance of hepatocyte monolayers but has only a slight effect on 3-D cultured hepatocytes. These differential MTX toxicities regarding culture medium and culture models were assumed to correlate with multidrug resistance associated protein 2 (Mrp2). The involvement of Mrp2 was confirmed directly by the fact that MTX intracellularly accumulated less in gel entrapped hepatocytes than in hepatocyte monolayer but could be enhanced by Mrp2 inhibitors accompanied by reduced drug resistance. Furthermore, the expression of Mrp2 on gene level and transportation activity together with bile-duct-like structure were more significantly evidenced in 3-D gel entrapment culture than in 2-D monolayer culture. In conclusion, the highly preserved Mrp2 in 3-D gel entrapped hepatocytes determines its high drug resistance to MTX. Gel entrapped hepatocytes could be useful for investigation of hepatic transportation and hepatotoxicity.  相似文献   

16.
Chakladar S  Cheng L  Choi M  Liu J  Bennet AJ 《Biochemistry》2011,50(20):4298-4308
The MelA gene from Citrobacter freundii, which encodes a glycosyl hydrolase family 4 (GH4) α-galactosidase, has been cloned and expressed in Escherichia coli. The recombinant enzyme catalyzes the hydrolysis of phenyl α-galactosides via a redox elimination-addition mechanism involving oxidation of the hydroxyl group at C-3 and elimination of phenol across the C-1-C-2 bond to give an enzyme-bound glycal intermediate. For optimal activity, the MelA enzyme requires two cofactors, NAD(+) and Mn(2+), and the addition of a reducing agent, such as mercaptoethanol. To delineate the mechanism of action for this GH4 enzyme, we measured leaving group effects, and the derived β(lg) values on V and V/K are indistinguishable from zero (-0.01 ± 0.02 and 0.02 ± 0.04, respectively). Deuterium kinetic isotope effects (KIEs) were measured for the weakly activated substrate phenyl α-D-galactopyranoside in which isotopic substitution was incorporated at C-1, C-2, or C-3. KIEs of 1.06 ± 0.07, 0.91 ± 0.04, and 1.02 ± 0.06 were measured on V for the 1-(2)H, 2-(2)H, and 3-(2)H isotopic substrates, respectively. The corresponding values on V/K were 1.13 ± 0.07, 1.74 ± 0.06, and 1.74 ± 0.05, respectively. To determine if the KIEs report on a single step or on a virtual transition state, we measured KIEs using doubly deuterated substrates. The measured (D)V/K KIEs for MelA-catalyzed hydrolysis of phenyl α-D-galactopyranoside on the dideuterated substrates, (D)V/K((3-D)/(2-D,3-D)) and (D)V/K((2-D)/(2-D,3-D)), are 1.71 ± 0.12 and 1.71 ± 0.13, respectively. In addition, the corresponding values on V, (D)V((3-D)/(2-D,3-D)) and (D)V((2-D)/(2-D,3-D)), are 0.91 ± 0.06 and 1.01 ± 0.06, respectively. These observations are consistent with oxidation at C-3, which occurs via the transfer of a hydride to the on-board NAD(+), being concerted with proton removal at C-2 and the fact that this step is the first irreversible step for the MelA α-galactosidase-catalyzed reactions of aryl substrates. In addition, the rate-limiting step for V(max) must come after this irreversible step in the reaction mechanism.  相似文献   

17.
This article explores a new open-source method for developing and manufacturing high-quality scientific equipment suitable for use in virtually any laboratory. A syringe pump was designed using freely available open-source computer aided design (CAD) software and manufactured using an open-source RepRap 3-D printer and readily available parts. The design, bill of materials and assembly instructions are globally available to anyone wishing to use them. Details are provided covering the use of the CAD software and the RepRap 3-D printer. The use of an open-source Rasberry Pi computer as a wireless control device is also illustrated. Performance of the syringe pump was assessed and the methods used for assessment are detailed. The cost of the entire system, including the controller and web-based control interface, is on the order of 5% or less than one would expect to pay for a commercial syringe pump having similar performance. The design should suit the needs of a given research activity requiring a syringe pump including carefully controlled dosing of reagents, pharmaceuticals, and delivery of viscous 3-D printer media among other applications.  相似文献   

18.
The manner in which the nervous system regulates animal behaviors in natural environments is a fundamental issue in biology. To address this question, C. elegans has been widely used as a model animal for the analysis of various animal behaviors. Previous behavioral assays have been limited to two-dimensional (2-D) environments, confining the worm motion to a planar substrate that does not reflect three-dimensional (3-D) natural environments such as rotting fruits or soil. Here, we develop a 3-D worm tracker (3DWT) for freely moving C. elegans in 3-D environments, based on a stereoscopic configuration. The 3DWT provides us with a quantitative trajectory, including the position and movement direction of the worm in 3-D. The 3DWT is also capable of recording and visualizing postures of the moving worm in 3-D, which are more complex than those in 2-D. Our 3DWT affords new opportunities for understanding the nervous system function that regulates animal behaviors in natural 3-D environments.  相似文献   

19.
In single-particle analysis, a three-dimensional (3-D) structure of a protein is constructed using electron microscopy (EM). As these images are very noisy in general, the primary process of this 3-D reconstruction is the classification of images according to their Euler angles, the images in each classified group then being averaged to reduce the noise level. In our newly developed strategy of classification, we introduce a topology representing network (TRN) method. It is a modified method of a growing neural gas network (GNG). In this system, a network structure is automatically determined in response to the images input through a growing process. After learning without a masking procedure, the GNG creates clear averages of the inputs as unit coordinates in multi-dimensional space, which are then utilized for classification. In the process, connections are automatically created between highly related units and their positions are shifted where the inputs are distributed in multi-dimensional space. Consequently, several separated groups of connected units are formed. Although the interrelationship of units in this space are not easily understood, we succeeded in solving this problem by converting the unit positions into two-dimensional (2-D) space, and by further optimizing the unit positions with the simulated annealing (SA) method. In the optimized 2-D map, visualization of the connections of units provided rich information about clustering. As demonstrated here, this method is clearly superior to both the multi-variate statistical analysis (MSA) and the self-organizing map (SOM) as a classification method and provides a first reliable classification method which can be used without masking for very noisy images.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号