首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Water activity and substrate concentration effects on lipase activity   总被引:4,自引:0,他引:4  
Catalytic activity of lipases (from Rhizopus arrhizus, Canadida rugosa, and Pseudomonas sp. was studied in organic media, mainly diisopropyl ether. The effect of water activity (a(w)) on V(max) showed that the enzyme activity in general increased with increasing amounts of water for the three enzymes. This was shown both for esterification and hydrolysis reactions catalyzed by R. arrhizus lipase. In the esterification reaction the K(m) for the acid substrate showed a slight increase with increasing water activities. On the other hand, the K(m) for the alcohol substrate increased 10-20-fold with increasing water activity. The relative changes in K(m) were shown to be independent of the enzyme studied and solvent used. The effect was attributed to the increasing competition of water as a nucleophile for the acyl-enzyme at higher water activities. In a hydrolysis reaction the K(m) for the ester was also shown to increase as the water activity increased. The effect of water in this case was due to the fact that increased concentration of one substrate (water), and thereby increased saturation of the enzyme, will increase the apparent K(m) of the substrate (ester) to be determined. This explained why the hydrolysis rate decreased with increasing water activity at a fixed, low ester concentration. The apparent V(max) for R. arrhizus lipase was similar in four of six different solvents that were tested; exceptions were toulene and trichloroethylene, which showed lower values. The apparent K(m) for the alcohol in the solvents correlated with the hydrophobicity of the solvent, hydrophobic solvents giving lower apparent K(m). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 798-806, 1997.  相似文献   

2.
An active pyrophosphate-dependent phosphofructokinase containing a six residue polyhistidine tag has been cloned from Treponema pallidum, and characterized biochemically. The phosphofructokinase has pH optima for activity of 8.0 for both the forward and reverse reactions. The apparent K(m) for pyrophosphate was 0.042 mM (V(max) of 141 U mg(-1) protein) and for fructose-6-phosphate, 0.529 mM. The apparent K(m) for the reverse reaction for fructose-1,6-diphosphate was 0.267 mM (V(max) of 42.4 U mg(-1) protein). The enzyme appears to be both a dimer and non-allosteric.  相似文献   

3.
The enantioselective recognition mechanism of secondary alcohol by lipases originated from Candida rugosa and Pseudomonas cepacia was elucidated on the basis of the kinetic study of the esterification of alcohol with lauric acid in isooctane. To obtain inherent kinetic parameters, we utilized a surfactant-coated lipase whose conformation is considered to be an "open" form in a homogeneous organic solvent. Based on the experimental results, the enantioselectivity of lipases was found to be derived from the difference in the V(max) values between the two enantiomers. The same result was observed when lipases of different origin and substrates with different molecular structures were applied. © 1999 John Wiley & Sons, Inc.  相似文献   

4.
The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.  相似文献   

5.
Endothelial lipase (EL) is a newly identified member of the triglyceride lipase gene family that hydrolyzes high-density lipoprotein (HDL) phospholipids. This study investigates the ability of the major apolipoproteins of rHDL to regulate the kinetics of EL-mediated phospholipid hydrolysis in well-characterized, homogeneous preparations of spherical rHDL. The rHDL contained either apoA-I as the only apolipoprotein, (A-I)rHDL, apoA-II as the only apolipoprotein, (A-II)rHDL, or apoA-I as well as apoA-II, (A-I/A-II)rHDL. The rHDL were comparable in terms of size and lipid composition and contained cholesteryl esters (CE) as their sole core lipid. Phospholipid hydrolysis was quantitated as the mass of nonesterified fatty acids (NEFA) released from the rHDL during incubation with EL. The V(max) of phospholipid hydrolysis for (A-I/A-II)rHDL [391.9 +/- 12.9 nmol of NEFA formed (mL of EL)(-1) h(-1)] was greater than (A-I)rHDL [152.8 +/- 4.7 nmol of NEFA formed (mL of EL)(-1) h(-1)]. The energy of activation (E(a)) for the hydrolysis reactions was calculated to be 52.1 and 34.8 kJ mol(-1) for (A-I)rHDL and (A-I/A-II)rHDL, respectively. Minimal phospholipid hydrolysis was observed for the (A-II)rHDL. Kinetic analysis showed that EL has a higher affinity for the phospholipids in (A-I)rHDL [K(m)(app) = 0.10 +/- 0.01 mM] than in (A-I/A-II)rHDL [K(m)(app) = 0.27 +/- 0.03 mM]. Furthermore, (A-I)rHDL is a competitive inhibitor of the EL-mediated phospholipid hydrolysis of (A-I/A-II)rHDL. These results establish that apolipoproteins are major determinants of the kinetics of EL-mediated phospholipid hydrolysis in rHDL.  相似文献   

6.
An extracellular thermostable lipase from Amycolatopsis mediterranei DSM 43304 has been purified to homogeneity using ammonium sulphate precipitation followed by anion exchange chromatography and hydrophobic interaction chromatography. This protocol resulted in a 398-fold purification with 36% final recovery. The purified A. mediterranei DSM 43304 lipase (AML) has an apparent molecular mass of 33 kDa. The N-terminal sequence, AANPYERGPDPTTASIEATR, showed highest similarity to a lipase from Streptomyces exfoliatus. The values of K(m)(app) and V(max)(app) for p-nitrophenyl palmitate (p-NPP) at the optimal temperature (60°C) and pH (8.0) were 0.099±0.010 mM and 2.53±0.06 mmol/min mg, respectively. The purified AML displayed significant activity towards a range of short and long chain triglyceride substrates and p-nitrophenyl esters. Hydrolysis of glycerol ester bonds occurred non-specifically. The purified AML displayed significant stability in the presence of organic solvents (40%, v/v) and catalyzed the synthesis of the flavour ester isoamyl acetate in free and immobilized states.  相似文献   

7.
Two new esterases (JEA and JEB) and a lipase (JL) were extracted from the seeds of Jatropha curas L. Lipase activity was only found during germination of the seeds and increased to a maximum after 4 days of germination. All enzymes were found to be most active in the alkaline range at around pH 8 and the purified (fractionated precipitation with ethanol and gel filtration) esterases were very stable at high temperatures. The molecular weight (SDS-PAGE) of both esterases was determined to be 21.6-23.5 kDa (JEA) and 30.2 kDa (JEB) and the isoelectric point was 5.7-6.1 for esterase JEA and 9.0 for esterase JEB. Most ions caused a negative influence on the activity of both esterases. Using p-nitrophenyl butyrate as a substrate JEA showed a K(m) of 0.02 mM and a v(max) of 0.26 micromol mg(-1) min(-1). Under the same conditions JEB showed a K(m) of 0.07 mM and a v(max) of 0.24 micromol mg(-1) min(-1). Both esterases hydrolyzed tributyrin, nitrophenyl esters up to a chain length of =C4 and naphtylesters up to a chain length =C6. In transesterification reactions, JL was found to be most active at very low water activities (0.2) and in high water activities, the lipase hydrolysed triglycerides into conversions above 80%. The lipase hydrolysed both short chain and long chain triglycerides at about the same rate but was inactive on alpha-methylbenzyl acetate. JL is a potentially useful biocatalyst in the hydrolysis of triglycerides in organic solvents.  相似文献   

8.
Duong M  Psaltis M  Rader DJ  Marchadier D  Barter PJ  Rye KA 《Biochemistry》2003,42(46):13778-13785
Hepatic lipase (HL) and endothelial lipase (EL) are both members of the triglyceride lipase gene family. HL hydrolyzes phospholipids and triglycerides in triglyceride-rich lipoproteins and high-density lipoproteins (HDL). EL hydrolyzes HDL phospholipids and has low triglyceride lipase activity. The aim of this study was to determine if HL and EL hydrolyze different HDL phospholipids and whether HDL phospholipid composition regulates the interaction of EL and HL with the particle surface. Spherical, reconstituted HDL (rHDL) containing either 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-palmitoyl-2-linoleoylphosphatidylcholine (PLPC), 1-palmitoyl-2-arachidonylphosphatidylcholine (PAPC), or 1-palmitoyl-2-docosahexanoylphosphatidylcholine (PDPC) as the only phospholipid, apolipoprotein A-I as the only apolipoprotein, and either cholesteryl esters (CE) only or mixtures of CE and triolein (TO) in their core were prepared. The rHDL were similar in size and had comparable core lipid/apoA-I molar ratios. The CE-containing rHDL were used to determine the kinetics of HL- and EL-mediated phospholipid hydrolysis. For HL the V(max) of phospholipid hydrolysis for (POPC)rHDL > (PLPC)rHDL approximately (PDPC)rHDL > (PAPC)rHDL, while the K(m)(app) for (POPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (PAPC)rHDL. For EL the V(max) for (PDPC)rHDL > (PAPC)rHDL > (PLPC)rHDL approximately (POPC)rHDL, while the K(m)(app) for (PAPC)rHDL approximately (PLPC)rHDL > (POPC)rHDL > (PDPC)rHDL. The kinetics of EL- and HL-mediated TO hydrolysis was determined using rHDL that contained TO in their core. For HL the V(max) of TO hydrolysis for (PLPC)rHDL > (POPC)rHDL > (PAPC)rHDL > (PDPC)rHDL, while the K(m)(app) for (PLPC)rHDL > (POPC)rHDL approximately (PAPC)rHDL > (PDPC)rHDL. For EL the V(max) and K(m)(app) for (PAPC)rHDL > (PDPC)rHDL > (PLPC)rHDL > (POPC)rHDL. These results establish that EL and HL have different substrate specificities for rHDL phospholipids and that their interactions with the rHDL surface are regulated by phospholipids.  相似文献   

9.
脂肪酶在微乳液和微乳液凝胶中催化辛酸辛醇的酯化反应   总被引:4,自引:0,他引:4  
脂肪酶在合成反应中具有很高的区域选择性和立体选择性 ,已广泛用于食品工业和药物工业[1,2 ] ,在有机介质中的脂肪酶催化反应已有较多研究[3 ,4 ] 。微乳液一般由表面活性剂、助表面活性剂、油和水等组份组成 ,它是一种热力学稳定、光学透明、宏观均匀而微观不均匀的体系 ,能提供酶催化所需要的巨大油 /水界面[5] 。而将脂肪酶增溶于油包水(W /O)微乳液中的纳米级“水池”中 ,可使酶以分子水平分散[6] ,图 1(a) ,从而可用来模拟细胞微环境中的反应。油包水微乳液中的酶可通过加入明胶而制成固定化酶 ,含明胶的微乳液凝胶 (MBGs)最早…  相似文献   

10.
Nnane IP  Damani LA 《Life sciences》2003,73(3):359-369
This study was conducted to examine the involvement of cytochrome P450 (CYP450) and the flavin-containing monooxygenase (FMO) in the sulphoxidation of ethyl methyl sulphide (EMS), 4-chlorophenyl methyl sulphide (CPMS) and diphenyl sulphide (DPS) in human liver microsomes from a phenotypic CYP2D6 extensive metabolizer. Human liver microsomes catalyzed the sulphoxidation of EMS, CPMS and DPS to their corresponding sulphoxides. Lineweaver-Burk plots for the sulphoxidation of EMS in human liver microsomes indicated that the apparent K(m) and V(max) were 1.53 +/- 0.07 mM and 1.11 +/- 0.25 nmoles/mg protein/min, respectively. The apparent K(m) and V(max) for the sulphoxidation of CPMS were 0.17 +/- 0.05 mM and 1.41 +/- 0.16 nmoles/mg protein/min, respectively. The apparent K(m) and V(max) for the sulphoxidation of DPS were 0.10 +/- 0.01 mM and 1.08 +/- 0.05 nmoles/mg protein/min, respectively. Methimazole noncompetitively inhibited the sulphoxidation of EMS, CPMS and DPS by human liver microsomes with K(i) values of 8.6 +/- 0.6, 5.7 +/- 0.4 and 6.6 +/- 0.5 mM, respectively. SKF525A noncompetitively inhibited the sulphoxidation of CPMS and DPS by human liver microsomes with K(i) values of 6.6 +/- 0.4 and 0.40 +/- 0.1 mM, respectively. The results suggest that FMO is involved in the sulphoxidation of EMS, CPMS and DPS while CYP450 is involved in the sulphoxidation of CPMS and DPS in human liver microsomes.  相似文献   

11.
Candida rugosa lipase solubilized in organic solvents in the presence of both surfactant and water could catalyze the hydrolysis of triglycerides, and kinetic analysis of the lipase-catalyzed reaction was found to be possible in this system. Among eight organic solvents tested, isooctane was most effective for the hydrolysis of olive oil in reversed micelles. Temperature effect, pH profile, K(m,app) and V(max,app) were determined. Among various chemical compounds, Cu(2+), Hg(2+), and Fe(3+) inhibited lipase severely. But the enzyme activity was restorable partially by adding histidine or glycine to the system containing these metal ions. The enzyme activity was dependent on R (molar ratio of water to surfactant) and maximum activity was obtained at R = 10.5. Upon addition of glycerol to the reversed micelles, lipase activity was affected in a different fashion depending on the R values. Stability of the lipase in reversed micelles was also dependent on R, and it was most stable at R = 5.5.  相似文献   

12.
The reduction of the heterodisulfide of coenzyme M (H-S-CoM) and 7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) is a key reaction in the metabolism of methanogenic bacteria. The heterodisulfide reductase catalyzing this step was purified 80-fold to apparent homogeneity from Methanobacterium thermoautotrophicum. The native enzyme showed an apparent molecular mass of 550 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed the presence of three different subunits of apparent molecular masses 80 kDa, 36 kDa, and 21 kDa. The enzyme, which was brownish yellow, contained per mg protein 7 +/- 1 nmol FAD, 130 +/- 10 nmol non-heme iron and 130 +/- 10 nmol acid-labile sulfur, corresponding to 4 mol FAD and 72 mol FeS/mol native enzyme. The purified heterodisulfide reductase catalyzed the reduction of CoM-S-S-HTP (app. Km = 0.1 mM) with reduced benzylviologen at a specific rate of 30 mumol.min-1.mg protein-1 (kcat = 68 s-1) and the reduction of methylene blue with H-S-CoM (app. Km = 0.2 mM) plus H-S-HTP (app. Km less than 0.05 mM) at a specific rate of 15 mumol.min-1.mg-1. The enzyme was highly specific for CoM-S-S-HTP and H-S-CoM plus H-S-HTP. The physiological electron donor/acceptor remains to be identified.  相似文献   

13.
Yang X  Ma K 《Journal of bacteriology》2007,189(8):3312-3317
An NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima was purified. The enzyme was very active in catalyzing the reduction of oxygen to hydrogen peroxide with an optimal pH value of 7 at 80 degrees C. The V(max) was 230 +/- 14 mumol/min/mg (k(cat)/K(m) = 548,000 min(-1) mM(-1)), and the K(m) values for NADH and oxygen were 42 +/- 3 and 43 +/- 4 muM, respectively. The NADH oxidase was a heterodimeric flavoprotein with two subunits with molecular masses of 54 kDa and 46 kDa. Its gene sequences were identified, and the enzyme might represent a new type of NADH oxidase in anaerobes. An NADH-dependent peroxidase with a specific activity of 0.1 U/mg was also present in the cell extract of T. maritima.  相似文献   

14.
In osmoregulating teleost fish, urea is a minor nitrogen excretory product, whereas in osmoconforming marine elasmobranchs it serves as the major tissue organic solute and is retained at relatively high concentrations ( approximately 400 mmol/l). We tested the hypothesis that urea transport across liver mitochondria is carrier mediated in both teleost and elasmobranch fishes. Intact liver mitochondria in rainbow trout (Oncorhynchus mykiss) demonstrated two components of urea uptake, a linear component at high concentrations and a phloretin-sensitive saturable component [Michaelis constant (K(m)) = 0.58 mmol/l; maximal velocity (V(max)) = 0.12 mumol.h(-1).mg protein(-1)] at lower urea concentrations (<5 mmol/l). Similarly, analysis of urea uptake in mitochondria from the little skate (Raja erinacea) revealed a phloretin-sensitive saturable transport (K(m) = 0.34 mmol/l; V(max) = 0.054 mumol.h(-1).mg protein(-1)) at low urea concentrations (<5 mmol/l). Surprisingly, urea transport in skate, but not trout, was sensitive to a variety of classic ionophores and respiration inhibitors, suggesting cation sensitivity. Hence, urea transport was measured in the reverse direction using submitochondrial particles in skate. Transport kinetics, inhibitor response, and pH sensitivity were very similar in skate submitochondrial particle submitochondrial particles (K(m) = 0.65 mmol/l, V(max) = 0.058 mumol.h(-1).mg protein(-1)) relative to intact mitochondria. We conclude that urea influx and efflux in skate mitochondria is dependent, in part, on a bidirectional proton-sensitive mechanism similar to bacterial urea transporters and reminiscent of their ancestral origins. Rapid equilibration of urea across the mitochondrial membrane may be vital for cell osmoregulation (elasmobranch) or nitrogen waste excretion (teleost).  相似文献   

15.
The hydrolysis and transphosphatidylation of lysophosphatidylcholine (LPC), with a partially purified preparation of phospholipase D (PL D) from Savoy cabbage, was investigated. These reactions were about 20 times slower than the hydrolysis of phosphatidylcholine (PC) in a micellar system. For the transfer reaction, 2 M glycerol was included in the media, which suppressed the hydrolytic reaction. Both reactions presented similar V(max) values, suggesting that the formation of the phosphatidyl-enzyme intermediate is the rate-limiting step. The enzyme had an absolute requirement for Ca(2+), and the optimum concentration was approximately 40 mM CaCl(2). K(Ca)(app) was calculated to be 8.6+/-0.74 mM for the hydrolytic and 10+/-0.97 mM for the transphosphatidylation reaction. Both activities reached a maximum at pH 5.5, independent of Ca(2+) concentration. Kinetic studies showed that the Km(app) for the glycerol in the transphosphatidylation reaction is 388+/-37 mM. Km(app) for the lysophosphatidylcholine depended on Ca(2+) concentration and fell between 1 and 3 mM at CaCl(2) concentrations from 4 to 40 mM. SDS, TX-100, and CTAB did not activate the enzyme as reported for phosphatidylcholine hydrolysis; on the contrary, reaction rates decreased at detergent concentrations at or above that of lysophosphatidylcholine.  相似文献   

16.
Catalase was immobilized on the chitosan film that is a natural polymer. Studies were done on free catalase and immobilized catalase on chitosan film concerning the determination of optimum temperature, optimum pH, thermal stability, storage stability, operational stability, and kinetic parameters. It was determined that optimum temperature for free catalase and immobilized catalase on chitosan film is 25 degrees C, and optimum pH is 7.0. It was found as K(m) = 25.16 mM, V(max) = 24042 μmole/min mg protein for free catalase, K(m) = 27.67 mM, V(max) = 1022 μmole/min mg protein for immobilized catalase on chitosan. It was observed that there was a big difference between V(max) value of the free catalase and V(max) value of immobilized catalase on chitosan film whereas there were minor changes in the value of K(m) for free catalase and immobilized catalase. It was found that storage stability at 5 degrees C for immobilized catalase stored wet is greater than free catalase and immobilized catalase stored dry, and immobilized catalase showed a operational stability.  相似文献   

17.
Pollock VV  Barber MJ 《Biochemistry》2001,40(5):1430-1440
Rhodobacter sphaeroides f. sp. denitrificans biotin sulfoxide reductase catalyzes the reduction of d-biotin d-sulfoxide (BSO) to biotin. Initial rate studies of the homogeneous recombinant enzyme, expressed in Escherichia coli, have demonstrated that the purified protein utilizes NADPH as a facile electron donor in the absence of any additional auxiliary proteins. We have previously shown [Pollock, V. V., and Barber, M. J. (1997) J. Biol. Chem. 272, 3355-3362] that, at pH 8 and in the presence of saturating concentrations of BSO, the enzyme exhibits, a marked preference for NADPH (k(cat,app) = 500 s(-1), K(m,app) = 269 microM, and k(cat,app)/K(m,app) = 1.86 x 10(6) M(-1) s(-1)) compared to NADH (k(cat,app) = 47 s(-1), K(m,app) = 394 microM, and k(cat,app)/K(m,app) = 1.19 x 10(5) M(-1) s(-1)). Production of biotin using NADPH as the electron donor was confirmed by both the disk biological assay and by reversed-phase HPLC analysis of the reaction products. The purified enzyme also utilized ferricyanide as an artificial electron acceptor, which effectively suppressed biotin sulfoxide reduction and biotin formation. Analysis of the enzyme isolated from tungsten-grown cells yielded decreased reduced methyl viologen:BSO reductase, NADPH:BSO reductase, and NADPH:FR activities, confirming that Mo is required for all activities. Kinetic analyses of substrate inhibition profiles revealed that the enzyme followed a Ping Pong Bi-Bi mechanism with both NADPH and BSO exhibiting double competitive substrate inhibition. Replots of the 1/v-axes intercepts of the parallel asymptotes obtained at several low concentrations of fixed substrate yielded a K(m) for BSO of 714 and 65 microM for NADPH. In contrast, utilizing NADH as an electron donor, the replots yielded a K(m) for BSO of 132 microM and 1.25 mM for NADH. Slope replots of data obtained at high concentrations of BSO yielded a K(i) for BSO of 6.10 mM and 900 microM for NADPH. Kinetic isotope studies utilizing stereospecifically deuterated NADPD indicated that BSO reductase uses specifically the 4R-hydrogen of the nicotinamide ring. Cyanide inhibited NADPH:BSO and NADPH:FR activities in a reversible manner while diethylpyrocarbonate treatment resulted in complete irreversible inactivation of the enzyme concomitant with molybdenum cofactor release, indicating that histidine residues are involved in cofactor-binding.  相似文献   

18.
F Goubet  D Mohnen 《Plant physiology》1999,121(1):281-290
The transfer of a methyl group from S-adenosyl-L-methionine onto the carboxyl group of alpha-1,4-linked-galactosyluronic acid residues in the pectic polysaccharide homogalacturonan (HGA) is catalyzed by an enzyme commonly referred to as pectin methyltransferase. A pectin methyltransferase from microsomal membranes of tobacco (Nicotiana tabacum) was previously characterized (F. Goubet, L.N. Council, D. Mohnen [1998] Plant Physiol 116: 337-347) and named HGA methyltransferase (HGA-MT). We report the solubilization of HGA-MT from tobacco membranes. Approximately 22% of the HGA-MT activity in total membranes was solubilized by 0.65% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid containing 1 mM dithioerythritol. The addition of phosphatidylcholine and the methyl acceptors HGA or pectin (30% degree of esterification) to solubilized enzyme increased HGA-MT activity to 35% of total membrane-bound HGA-MT activity. Solubilized HGA-MT has a pH optimum of 7.8, an apparent K(m) for S-adenosyl-L-methionine of 18 microM, and an apparent V(max) of 0. 121 pkat mg(-1) of protein. The apparent K(m) for HGA and for pectin is 0.1 to 0.2 mg mL(-1). Methylated product was solubilized with boiling water and ammonium oxalate, two conditions used to solubilize pectin from the cell wall. The release of 75% to 90% of the radioactivity from the product pellet by mild base treatment showed that the methyl group was incorporated as a methyl ester rather than a methyl ether. The fragmentation of at least 55% to 70% of the radiolabeled product by endopolygalacturonase, and the loss of radioactivity from the product by treatment with pectin methylesterase, demonstrated that the bulk of the methylated product produced by the solubilized enzyme was pectin.  相似文献   

19.
Preliminary studies showed that the periplasmic nitrate reductase (Nap) of Rhodobacter sphaeroides and the membrane-bound nitrate reductases of Escherichia coli are able to reduce selenate and tellurite in vitro with benzyl viologen as an electron donor. In the present study, we found that this is a general feature of denitrifiers. Both the periplasmic and membrane-bound nitrate reductases of Ralstonia eutropha, Paracoccus denitrificans, and Paracoccus pantotrophus can utilize potassium selenate and potassium tellurite as electron acceptors. In order to characterize these reactions, the periplasmic nitrate reductase of R. sphaeroides f. sp. denitrificans IL106 was histidine tagged and purified. The V(max) and K(m) were determined for nitrate, tellurite, and selenate. For nitrate, values of 39 micromol x min(-1) x mg(-1) and 0.12 mM were obtained for V(max) and K(m), respectively, whereas the V(max) values for tellurite and selenate were 40- and 140-fold lower, respectively. These low activities can explain the observation that depletion of the nitrate reductase in R. sphaeroides does not modify the MIC of tellurite for this organism.  相似文献   

20.
A novel preparation method for surfactant-lipase complexes has been developed utilizing water in oil emulsions. In order to optimize the preparation conditions, we have investigated the effects of several operational parameters on the enzymatic activity of the surfactant-lipase complexes in organic media. When a nonionic surfactant was employed under optimal preparation conditions [alkaline pH 8-10, organic/aqueous = 90/10 (v/v), concentration of surfactant, 10 mM[, the surfactant-lipase complex efficiently catalyzed the esterification of benzyl alcohol with lauric acid in organic media. The esterification rate of the surfactant-lipase complex was increased over 16-fold relative to the native powder lipase. Furthermore, the lipase complex showed high storage stability. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 455-460, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号