首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rapid and reliable assessment of pathogenic microbial contamination in water is critically important. In the present work we evaluated the suitability of Raman Spectroscopy and Chemical Imaging as enumeration techniques for waterborne pathogens. The prominent C-H stretching band observed between 2800-3000 cm(-1) of the spectrum is used for quantification purposes. This band provides the highest intensity of the bacterial-spectrum bands facilitating the detection of low number of microorganisms. The intensity of the Raman response correlates with number of cells present in drops of sample water on aluminum-coated slides. However, concentration of pathogens in drinking and recreational water is low, requiring a concentration step, i.e., filtering. Subsequent evaluation of filtering approaches for water sampling for Raman detection showed significant background signal from alumina and silver membranes that reduces method sensitivity. Samples concentrated by filtration show good correlation between Raman spectroscopy and other quantification methods including turbidity (R(2)=0.92), plate counts (R(2)=0.87) and dry weight (R(2)=0.97). Background interferences did not allow for evaluation of this relationship at low cell concentrations.  相似文献   

2.
Surface-enhanced Raman spectra of membrane protein, located in native mem brane, bacteriorhodopsin, adsorbed by silver electrodes and hydrosols have been obtained for the first time. The distance between the retinal Schiff’s base and the external side of purple membrane of Halobacteriim halobiim was shown to be 6–9 A. The possible distribition of the point charges aroind protonated retinal Schiff’s base has been proposed on the basis of the resonance Raman data and quantim chemical CNDO/S-CI calculations. Such a model contains tyrosine residue located near the retinal Schiff’s base and connected with COO- groipvia hydrogen bond COO- group acts as a protonated Schiff’s base counterion. The distance between oxygen atoms of COO- group and retinal Schiff’s base plane is 2.5–3.0A. The hydrogen bond (O-H. . .O-) length between oxygen atom of OH-group and oxygen atom of COO- group has been chosen 2.7±0.1Å Tyrosine hydroxyl group is located at 2.8–3.5 A from retinal Schiff’s base plane. It was shown that in contrast to generally accepted Honig and Nakanishi model the spectral properties of Brh570, K610, L550 and M4Ï2 forms of bacteriorhodopsin photocycle as well as observed tyrosine deprotonation and COO- group protonation during M412 formation can be explained reasonably well by the suggested charge distribution. Furthermore, such a model of bacteriorhodopsin active site microenvironment allows to explain catalyzing of photo-induced protonated retinal Schiff’s base deprotonation observed in our preliminary experiments.  相似文献   

3.
Resonance Raman spectroscopy may yield precise information on the conformation of, and on the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process, whether isolated in solvents, embedded in soluble or membrane proteins, or, as shown recently, in vivo. By making use of this technique, it is possible, for instance, to relate the electronic properties of these molecules to their structure and/or the physical properties of their environment, or to determine subtle changes of their conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman spectroscopy, the information content of resonance Raman spectra of chlorophyll and carotenoid molecules is described in this review, together with the experiments which helped in determining which structural parameter each Raman band is sensitive to. A selection of applications of this technique is then presented, in order to give a fair and precise idea of which type of information can be obtained from its use in the field of photosynthesis.  相似文献   

4.
Kuzuhara A 《Biopolymers》2005,77(6):335-344
In order to investigate the influence of chemical treatments (reduction, heating, and oxidation) on keratin fibers, the structure of virgin white human hair resulting from a permanent hair straightening process at various depths of cross-sectional samples was directly analyzed without isolating the cuticle and cortex, using Raman spectroscopy. The band shape of the cuticle was different from that of the cortex, and the cuticle had a more amorphous structure, compared with the cortex. The S-S band intensity existing in the hair surface remarkably decreased, while the S-S band intensity in the hair center was not changed by performing the reduction process. In the case of heating the keratin fibers after the reduction process, this tendency was unchanged. On the other hand, the amide III (unordered) band intensity in the cortex region increased, indicating that proteins existing throughout the cortex region caused a change to the random coil form. Moreover, approximately 95% of the disconnected -SS- groups were clearly reconnected by performing the oxidation process after heating (the degree of reconnection of -SS- groups was about 90%, in the case of oxidizing after reduction). From these experiments, we concluded that the heat treatment process in the permanent hair straightening treatment caused the randomization of proteins existing throughout the cortex region, thereby contributing to the acceleration of the reconnection of -SS- groups during the oxidation process.  相似文献   

5.
In this work Raman spectroscopy was used to investigate uncoated magnetic fluids (UMF's) and coated magnetic fluids (CMF's). The coating agents were N-oleoylsarcosine, dodecanoic acid, and ethoxylated polyalcohol. The Raman probe is the hydroxyl (OH) group chemisorbed at the magnetic nanoparticle surface and the measurements were performed in the typical OH bending and OH stretching regions. The room temperature Raman data obtained from the UMF's and CMF's are compared to each other and with the data obtained from liquid water. Suppression of Raman modes from the MF's are discussed in terms of symmetry reduction and in terms of the interaction between the chemisorbed OH-group and the surrounding medium. The relative grafting coefficient associated to different coatings are estimated from the Raman data. The highest grafting coefficient is achieved with a single coating of dodecanoic acid in the hydrocarbon-based MF. The surface-grafting coefficient of the N-oleoylsarcosine-coated MF reduces when the polar liquid carrier replaces the non-polar liquid carrier. In comparison to liquid water, it was found that the hydrogen bonding between the chemisorbed OH-group and the solvent was enhanced in UMF's and reduced in CMF's.  相似文献   

6.
Raman spectroscopy was used to determine structural features of the native toxin alpha from Naja nigricollis, which contains only one Trp and one Tyr, and of chemically modified toxins having chromophores added to these two conserved aromatic amino acids. The percentages of secondary structure were determined by using amide I polypeptidic vibration analysis and are in agreement with X-ray structure [Low et al. (1976) Proc. Natl. Acad Sci. U.S.A. 73, 2991-2994] as well as with the geometry of the disulfide bridges estimated by using the v(S-S) vibrations. In the native toxin alpha, the single invariant tyrosine 25 appears to be buried in the structure and involved in a strong hydrogen bond. We have chemically modified these two invariant aromatic side chains by addition of chromophores. The presence of a (nitrophenyl)sulfenyl (NPS) chromophore bound to the Trp does not perturb the secondary structure of the toxin as shown by the analysis of the polypeptidic amide I vibrations; however, the environment of this Trp and the geometry of a disulfide bridge seem to be modified. The secondary structure is not affected by the presence of the NPS chromophore; therefore, the decrease in binding affinity observed after modification of Trp-29 by the reagent NPS-Cl [Faure et al. (1983) Biochemistry 22, 2068-2076] is due to an alteration of the environment of this aromatic amino acid and/or a steric hindrance and not to an overall modification of the toxin structure. The binding assays of [nitrotyrosyl]toxin show that after nitration the affinity toward the monoclonal antibody M alpha 1 is unchanged and that the affinity toward the cholinergic receptor (AcChR) from Torpedo marmorata remains high. We concluded that the structure of toxin alpha after adding the NO2 chromophore to Tyr-25 is the same as it is in native toxin.  相似文献   

7.
Investigations of the surface chemistry of marine organisms are essential to understand their chemically mediated interactions with fouling organisms. In this context, the concentration of natural products in the immediate vicinity of algal surfaces, as well as their biological activity, are of particular importance. However, due to lack of appropriate methods, the distribution of compounds within the chemical sphere around marine algae is unknown. This study demonstrates the suitability of confocal resonance Raman microspectroscopy for the determination of metabolites around algal surfaces with a micrometer resolution. The spatial distribution of carotenoids in the diffusion boundary layer of the brown alga Fucus vesiculosus and the green alga Ulva sp. was determined using the disruption-free optical method. A gradient of carotenoids was determined within 0 to 150 μm from the surface of thealgae, thereby demonstrating the release of the non-polar metabolites involved in antifouling processes. Thedifferences in the carotenoid composition of the brown and green algae were reflected in the spectra. Resonance Raman microspectroscopy also allowed visualization of the lateral distribution of fucoxanthin on the algal surface and localization of concentration maxima within a 50 × 50 μm2 area. The results from this work show clearly that established dipping techniques suitable for the extraction of the diffusion boundary layer of macroalgae only provide an average of the local strongly variable concentrations of metabolites on algal surfaces.  相似文献   

8.
Investigations of the surface chemistry of marine organisms are essential to understand their chemically mediated interactions with fouling organisms. In this context, the concentration of natural products in the immediate vicinity of algal surfaces, as well as their biological activity, are of particular importance. However, due to lack of appropriate methods, the distribution of compounds within the chemical sphere around marine algae is unknown. This study demonstrates the suitability of confocal resonance Raman microspectroscopy for the determination of metabolites around algal surfaces with a micrometer resolution. The spatial distribution of carotenoids in the diffusion boundary layer of the brown alga Fucus vesiculosus and the green alga Ulva sp. was determined using the disruption-free optical method. A gradient of carotenoids was determined within 0 to 150 μm from the surface of the algae, thereby demonstrating the release of the non-polar metabolites involved in antifouling processes. The differences in the carotenoid composition of the brown and green algae were reflected in the spectra. Resonance Raman microspectroscopy also allowed visualization of the lateral distribution of fucoxanthin on the algal surface and localization of concentration maxima within a 50 × 50 μm(2) area. The results from this work show clearly that established dipping techniques suitable for the extraction of the diffusion boundary layer of macroalgae only provide an average of the local strongly variable concentrations of metabolites on algal surfaces.  相似文献   

9.
In recent years, the field of Raman spectroscopy has witnessed a surge in technological development, with the incorporation of ultrasensitive, charge-coupled devices, improved laser sources and precision Rayleigh-filter systems. This has led to the development of sensitive confocal micro-Raman spectrometers and imaging spectrometers that are capable of obtaining high spatial-resolution spectra and images of subcellular components within single living cells. This review reports on the application of resonance micro-Raman spectroscopy to the study of malaria pigment (hemozoin), a by-product of hemoglobin catabolization by the malaria parasite, which is an important target site for antimalarial drugs. The review aims to briefly describe recent studies on the application of this technology, elucidate molecular and electronic properties of the malaria pigment and its synthetic analog beta-hematin, provide insight into the mechanism of hemozoin formation within the food vacuole of the parasite, and comment on developing strategies for using this technology in drug-screening protocols.  相似文献   

10.
In recent years, the field of Raman spectroscopy has witnessed a surge in technological development, with the incorporation of ultrasensitive, charge-coupled devices, improved laser sources and precision Rayleigh-filter systems. This has led to the development of sensitive confocal micro-Raman spectrometers and imaging spectrometers that are capable of obtaining high spatial-resolution spectra and images of subcellular components within single living cells. This review reports on the application of resonance micro-Raman spectroscopy to the study of malaria pigment (hemozoin), a by-product of hemoglobin catabolization by the malaria parasite, which is an important target site for antimalarial drugs. The review aims to briefly describe recent studies on the application of this technology, elucidate molecular and electronic properties of the malaria pigment and its synthetic analog β-hematin, provide insight into the mechanism of hemozoin formation within the food vacuole of the parasite, and comment on developing strategies for using this technology in drug-screening protocols.  相似文献   

11.
B Jollès  L Chinsky  A Laigle 《Biochimie》1984,66(2):101-104
Resonance Raman Spectroscopy allows a selective study of the bases of DNA and therefore of the interactions of these bases with ligands. This technique is also sensitive to structural modifications. We show here that, first, the structures of native poly(dA-dT).poly(dA-dT) and poly(dA).poly(dT) are not the same and that, secondly, it is possible to characterize the B----Z transition of poly(dG-dC).poly(dG-dC). The study of the Raman hypochromism during the thermal denaturation of the polynucleotides reveals that the stacking of the adenines in poly(dA).poly(dT) is near that observed in poly(rA) but differs of this stacking in poly(dA-dT).poly(dA-dT). The enhancement of the intensity of the guanine line at 1193 cm-1 and of the cytosine lines at 780 cm-1, 1 242 cm-1 and 1268 cm-1 as well as the shift of the guanine line at low frequency should allow to characterize a small proportion of base pairs in Z form in any DNA.  相似文献   

12.
Immunoassay employing surface-enhanced Raman spectroscopy   总被引:4,自引:0,他引:4  
Surface-enhanced Raman scattering (SERS) was used to measure binding between biomolecules with mutual affinity, including antigen-antibody interactions. The conjugation of nitro groups onto bovine serum albumin enhanced their specific SERS activity 10(4)-fold. A dye, 2-[4'-hydroxyphenylazo]benzoic acid (HABA), with a major absorption at the Raman excitation frequency, demonstrated surface-enhanced resonance Raman scattering (SERRS) when captured from solution by avidin-coated silver films. Individual peak intensities showed a logarithmic relationship to the HABA concentration in solution over the range 10(-8) to 10(-5) M. Another resonance dye, p-dimethylaminoazobenzene (DAB) was covalently attached to an antibody directed against human thyroid stimulating hormone (TSH), without loss of antibody activity. The resultant conjugate was used in a sandwich immunoassay for TSH antigen: silver surfaces coated with anti-TSH antibody captured TSH antigen which in turn captured the DAB-anti-TSH antibody conjugate. A linear relationship was observed between the intensity of the resultant SERRS signals and the TSH antigen concentration over a range of from 4 to 60 microIU/ml. These results demonstrate the potential utility of the SERRS effect as a readout in a one-step, no wash immunoassay system.  相似文献   

13.
Short narrow analytical HPLC columns have been used successfully with high linear flow-rates and combined with mass spectrometric detection to produce a generic approach to quantitative bioanalysis. The approach has been used to validate several assays in the low ng/ml region and an example is given in this paper. When combined with a simple solid-phase extraction process the need for complicated, time consuming method development has been removed for the majority of pharmaceutical compounds. The approach takes advantage of not only the extra selectivity of the MS–MS detector but the excellent resolution and peak shape produced by gradient elution.  相似文献   

14.
The Raman spectra in the low 5-200 cm-1 frequency region of metabolically active E. coli cells have been analyzed to determine whether they are indicators of a possible in vivo underlying order by applying standard concepts derived from the Raman spectroscopy of crystalline systems with varying degrees of order. The analysis suggests that in-vivo space-time ordered structures involving amino acids associated with DNA exist since the low frequency lines of metabolically active cells can be assigned to lines seen in the spectra of crystals of given amino acids known to associate with DNA early in the lifetime of a cell.  相似文献   

15.
The Raman spectra in the low 5–200 cm−1 frequency region of metabolically activeE. coli cells have been analyzed to determine whether they are indicators of a possible in vivo underlying order by applying standard concepts derived from the Raman spectroscopy of crystalline systems with varying degrees of order. The analysis suggests that in-vivo space-time ordered structures involving amino acids associated with DNA exist since the low frequency lines of metabolically active cells can be assigned to lines seen in the spectra of crystals of given amino acids known to associated with DNA early in the lifetime of a cell.  相似文献   

16.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. Photoexcitation of PYP triggers a photocycle that involves at least two intermediate states: an early red-shifted PYP(L) intermediate and a long-lived blue-shifted PYP(M) intermediate. In this study, we have explored the active site structures of these intermediates by resonance Raman spectroscopy. Quantum chemical calculations based on a density functional theory are also performed to simulate the observed spectra. The obtained structure of the chromophore in PYP(L) has cis configuration and no hydrogen bond at the carbonyl oxygen. In PYP(M), the cis chromophore is protonated at the phenolic oxygen and forms the hydrogen bond at the carbonyl group. These results allow us to propose structural changes of the chromophore during the photocycle of PYP. The chromophore photoisomerizes from trans to cis configuration by flipping the carbonyl group to form PYP(L) with minimal perturbation of the tightly packed protein interior. Subsequent conversion to PYP(M) involves protonation on the phenolic oxygen, followed by rotation of the chromophore as a whole. This large motion of the chromophore is potentially correlated with the succeeding global conformational changes in the protein, which ultimately leads to transduction of a biological signal.  相似文献   

17.
We report the Raman spectrum of liver alcohol dehydrogenase in solution. The enzyme's secondary structure as determined from an examination of the Raman bands is slightly different than that found in crystals by X-ray diffraction.  相似文献   

18.
《MABS-AUSTIN》2013,5(6):1509-1517
When administered in serum, an efficacious therapeutic antibody should be homogeneous to minimize immune reactions or injection site irritation during administration. Monoclonal antibody (mAb) phase separation is one type of inhomogeneity observed in serum, and thus screening potential phase separation of mAbs in serum could guide lead optimization. However, serum contains numerous components, making it difficult to resolve mAb/serum mixtures at a scale amenable to analysis in a discovery setting. To address these challenges, a miniaturized assay was developed that combined confocal microscopy with Raman spectroscopy. The method was examined using CNTO607, a poorly-soluble anti-interleukin-13 human mAb, and CNTO3930, a soluble anti-respiratory syncytial virus humanized mAb. When CNTO607 was diluted into serum above 4.5 mg/mL, phase separation occurred, resulting in droplet formation. Raman spectra of droplet phases in mixtures included bands at 1240 and 1670 cm?1, which are typical of mAb β-sheets, and lacked bands at 1270 and 1655 cm?1, which are typical of α-helices. The continuous phases included bands at 1270 and 1655 cm?1 and lacked those at 1240 and 1670 cm?1. Therefore, CNTO607 appeared to be sequestered within the droplets, while albumin and other α-helix-forming serum proteins remained within the continuous phases. In contrast, CNTO3930 formed only one phase, and its Raman spectra contained bands at 1240, 1670, 1270 and 1655 cm,?1 demonstrating homogeneous distribution of components. Our results indicate that this plate-based method utilizing confocal Raman spectroscopy to probe liquid-liquid phases in mAb/serum mixtures can provide a screen for phase separation of mAb candidates in a discovery setting.  相似文献   

19.
When administered in serum, an efficacious therapeutic antibody should be homogeneous to minimize immune reactions or injection site irritation during administration. Monoclonal antibody (mAb) phase separation is one type of inhomogeneity observed in serum, and thus screening potential phase separation of mAbs in serum could guide lead optimization. However, serum contains numerous components, making it difficult to resolve mAb/serum mixtures at a scale amenable to analysis in a discovery setting. To address these challenges, a miniaturized assay was developed that combined confocal microscopy with Raman spectroscopy. The method was examined using CNTO607, a poorly-soluble anti-interleukin-13 human mAb, and CNTO3930, a soluble anti-respiratory syncytial virus humanized mAb. When CNTO607 was diluted into serum above 4.5 mg/mL, phase separation occurred, resulting in droplet formation. Raman spectra of droplet phases in mixtures included bands at 1240 and 1670 cm−1, which are typical of mAb β-sheets, and lacked bands at 1270 and 1655 cm−1, which are typical of α-helices. The continuous phases included bands at 1270 and 1655 cm−1 and lacked those at 1240 and 1670 cm−1. Therefore, CNTO607 appeared to be sequestered within the droplets, while albumin and other α-helix-forming serum proteins remained within the continuous phases. In contrast, CNTO3930 formed only one phase, and its Raman spectra contained bands at 1240, 1670, 1270 and 1655 cm,−1 demonstrating homogeneous distribution of components. Our results indicate that this plate-based method utilizing confocal Raman spectroscopy to probe liquid-liquid phases in mAb/serum mixtures can provide a screen for phase separation of mAb candidates in a discovery setting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号