首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of KR12H-1 transfectoma in regard to chimeric antibody production was examined during long-term, repeated batch culture without selection pressure using antibiotics. Both serum-supplemented and serum-free media were used. Regardless of the medium used, the specific antibody productivity (q(Ab)) of transfectoma decreased by 60% to 88% during 70-day culture. This loss of antibody productivity was not due mainly to the appearance of a nonproducing population (NP) of transfectoma. The percentage of a producing population (P), which was monitored by the limiting dilution method, remained over 90% until the end of culture, indicating that the q(Ab) of P decreased during the culture. Flow cytometric data also showed the increase of cell population with low fluorescence intensity during culture, indicating that the intracellular antibody content of P decreased. The subclones of P obtained at the end of long-term culture were further characterized. Compared with the q(Ab) of P at the beginning of long-term culture, the q(Ab) of most P subclones was significantly low, confirming that the loss of antibody productivity was due mainly to the decreased q(Ab) of P during long-term culture. The decreased antibody gene copy number of P subclones was found to be partly responsible for the decreased q(Ab) of P during long-term culture. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
3.
Recombinant Chinese hamster ovary (CHO) cells expressing a humanized antibody were obtained by transfection of an antibody expression vector (pKC-GS-HC-huS) into CHO-K1 cells and subsequent glutamine synthetase (GS)-mediated gene amplification in media containing different concentrations of methionine sulfoximine (MSX). Concentrations consisted of 25, 200, 500, and 1000 microM of MSX. The highest producer (HP) subclones were isolated from each MSX level by the limiting dilution method and were characterized with respect to antibody production. No positive relationship was observed between specific antibody productivity (q(Ab)) and MSX concentration. Furthermore, it was found that the antibody production stability of these subclones was very poor even in the presence of selection pressure. During long-term cultures in the presence of the corresponding concentrations of MSX, q(Ab) of all HP subclones significantly decreased for the first six passages and thereafter stabilized. Southern and slot blot analyses showed that the loss of antibody gene copies was only partially responsible for the decreased q(Ab). Fluorescence in situ hybridization (FISH) analysis revealed some cytogenetic features indicative of antibody production instability. Unstable chromosomal structures including dicentrics, rings, and extremely long chromosomes were observed. Amplified sequences enclosed in nuclear projections were often observed. The telomeric repeat sequence, which may be involved in the stabilization of amplified arrays, was found to be absent at the ends of most marker chromosomes. Furthermore, FISH analysis revealed that the overall chromosome content was duplicated in some HP subclones. When metaphase of 12 high producing parental clones was examined, the frequency of occurrence of the polyploidy was 25%. Taken together, the data obtained here suggests that instability could be a concern in the development of CHO cells with GS-mediated gene amplification.  相似文献   

4.
Recombinant Chinese hamster ovary (CHO) cells expressing a high-level of chimeric antibody against S surface antigen of hepatitis B virus were obtained by co-transfection of heavy and light chain cDNA expression vectors into dihydrofolate reductase (dhfr)-deficient CHO cells and subsequent gene amplification in medium containing stepwise increments in methotrexate (MTX) level such as 0.02, 0.08, 0.32, 1.0, and 4.0 microM. The highest producer (HP) subclone was isolated from each MTX level and was characterized with respect to cell growth and antibody production in the corresponding level of MTX. The specific growth rate of the HP subclone was inversely proportional to the MTX level. On the other hand, its specific antibody productivity (qAb) rapidly increased with increasing MTX level up to 0.08 microM, and thereafter, it gradually increased to 20 microg/10(6) cells/day at 4 microM MTX. Southern blot analysis showed that the enhanced qAb at higher MTX level resulted from immunoglobulin (Ig) gene amplification. The stability of the HP subclones isolated at 0.02, 0.08, 0.32, and 1.0 microM MTX in regard to antibody production was investigated during long-term culture in the absence of MTX. The qAb of all subclones significantly decreased during the culture. However, the relative extent of decrease in qAb was variable among the subclones. The HP subclone isolated at 1 microM MTX was most stable and could retain 59% of the initial qAb after 80 days of cultivation. Southern blot analysis showed that this decrease in qAb of the subclones resulted mainly from the loss of Ig gene copies during long-term culture. Despite the decreased qAb, the HP subclone isolated at 1 microM MTX could maintain high volumetric antibody productivity over three months because of improved cell growth rate during long-term culture.  相似文献   

5.
Recombinant Chinese hamster ovary (rCHO) cells expressing a high level of chimeric antibody were obtained by cotransfection of heavy- and light-chain cDNA expression vectors into dihydrofolate reductase-deficient CHO cells and subsequent gene amplification in medium containing stepwise increments in methotrexate (MTX) level up to 1.0 microM. To determine the clonal variability within the amplified cell population in regard to antibody production stability, 20 subclones were randomly isolated from the amplified cell population at 1.0 microM MTX (CS13-1.0 cells). Clonal analysis showed that CS13-1.0 cells were heterogeneous with regard to specific growth rate (mu) and specific antibody productivity (qAb), although they were derived from a single clone. The mu and qAb of 20 subclones were in the range of 0.51 to 0.72 day-1 and 10.9 to 19.1 microgram/10(6) cells/day, respectively. During 8 weeks of cultivation in the absence of selective pressure, the mu of most subclones did not change significantly. On the other hand, their qAb decreased significantly. Furthermore, the relative decrease in qAb varied among subclones, ranging from 30% to 80%. Southern and Northern blot analyses showed that this decreased qAb resulted mainly from the loss of amplified immunoglobulin (Ig) gene copies and their respective cytoplasmic mRNAs. For the sake of screening convenience, an attempted was made to correlate the initial properties of subclones (such as mu, qAb, and Ig gene copies) with their antibody production stability during long-term culture. Among these initial properties examined, only qAb of subclones could help to predict their stability to some extent. The subclones with high qAb were relatively stable with regard to antibody production during long-term culture in the absence of selective pressure (P < 0. 005, ANOVA). Taken together, the clonal heterogeneity in an amplified CHO cell population necessitates clonal analysis for screening stable clones with high qAb.  相似文献   

6.
Methods for the selection of transfectoma cells that express large quantities of mouse-human chimeric antibodies have been develped. SP2/0 mouse myeloma cells were transfected with pSV2-gpt and pSV2-neo based immunoglobulin expression vectors. Double transfectants were selected using the xanthine-guanine phosphoribosyl transferase (gpt)and the neomycin (neo) selection marker genes. ELISA-based screening of transfectoma clones resulted in the isolation of IgG-producing transfectomas. Introduction of the kappa light-chain 3'-enhancer into the light-chain expression vector significantly increased immunoglobulin expression, but only when the enhancer was located at its physiological site, 9 kb downstream of the kappa constant region exon. With some of the transfectomas, final yields of up to 80 mg/L of chimeric IgG were obtained in conventional flask cultures using serum-free growth medium. A pilot-scale AcuSyst Maximizer hollow fiber cell culture system was used for the production of gram amounts of chimeric IgG. Results obtained with different transfectoma clones in conventional culture were not fully predictive for yields in the hollow fiber system. In contrast, differences in productivity between individual clones in the laboratory-scale Tecnomouse cell culture unit were comparable with those in the Maximizer system. Up to 200 mg of chimeric IgG were produced per day in one Maximizer bioreactor. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
Previously, the highest producing (HP) recombinant CHO subclones isolated at various methotrexate (MTX) levels showed different antibody production stability during long-term culture, although they were clonally derived from CS13 transformant. In this study, genetic basis for their difference in antibody production stability was investigated using southern blot hybridization and fluorescence in situ hybridization (FISH) techniques. Southern analysis of HP subclones revealed that light-chain (LC) and heavy-chain (HC) cDNAs were located closely within 23 kb on an amplification unit, and the configuration of LC and HC cDNAs within this amplification unit was not disrupted during long-term culture in the absence of MTX. However, when LC and HC genes were localized on the metaphase chromosomes of HP subclones using FISH, the amplified sequences were present as an extended array on diverse marker chromosomes. HP subclones selected at higher MTX level had more kinds of marker chromosomes. CS13*-002 isolated at 0.02 microM MTX had only one marker chromosome (m002), whereas CS13*-1.0 isolated at 1 microM MTX had five different ones (m10A, m10B, m10C, m10D, and m10E). Each marker chromosome showed different fate during long-term culture of HP subclones in the absence of MTX, resulting in different degrees of stability among the HP subclones. The m10A and m10B remained unchanged, whereas the others disappeared or evolved to variants with shortened amplified arrays. The cells containing stable marker chromosomes constituted dominant subpopulations in CS13*-1.0, and thereby CS13*-1.0 became most stable in regard to antibody production during long-term culture. Furthermore, our dual-color FISH showed that the telomeric ends of amplified arrays on the stable marker chromosomes were always surrounded by (TTAGGG)(n) sequences, indicating that (TTAGGG)(n) sequences are closely related to the stability and evolution of amplified sequences. Taken together, our data show that the assessment of genotypic stability of amplified CHO cells is a prerequisite for understanding their production stability during long-term culture in the absence of selection pressure.  相似文献   

8.
Hyperosmotic pressure increased specific antibody productivity (q(Ab)) of recombinant Chinese hamster ovary (rCHO) cells (SH2-0.32) and it depressed cell growth. Thus, the use of hyperosmolar medium did not increase the maximum antibody concentration substantially. To overcome this drawback, the feasibility of biphasic culture strategy was investigated. In the biphasic culture, cells were first cultivated in the standard medium with physiological osmolality (294 mOsm/kg) for cell growth. When cells reached the late exponential growth phase, the spent standard medium was replaced with the fresh hyperosmolar medium (522 mOsm/kg) for antibody production. The q(Ab) in growth phase with the standard medium was 2.1 microg per 10(6) cells/d, whereas the q(Ab) in antibody production phase with the hyperosmolar medium was 11.1 microg per 10(6) cells/d. Northern blot analysis showed a positive relationship between the relative contents of intracellular immunoglobulin messenger ribonucleic acid and q(Ab). Because of the enhanced q(Ab) and the increased cell concentration in biphasic culture, the maximum antibody concentration obtained in biphasic culture with 522 mOsm/kg medium exchange was 161% higher than that obtained in batch culture with the standard medium. Taken together, the simple biphasic culture strategy based on hyperosmotic culture is effective in improving antibody production of rCHO cells.  相似文献   

9.
10.
11.
Loss of monoclonal antibody (MAb) productivity in long-term, free-suspended cell culture is often attributed to the appearance of a nonproducing population of hybridoma cell (NP) in the culture which has a growth advantage over the producing population (P). However, when an NP appears in long-term culture of entrapped cells, it may not be able to take over the whole culture in a short period of time due to the limited growth of the entrapped cells. In order to examine the hypothesis that entrapped cells can have improved stability of MAb productivity due to limited cell growth, free-suspended cell culture and calcium alginate-entrapped cell culture with inocula consisting of a P and an NP were compared with regard to stability of MAb productivity in a repeated fed-batch culture. In free-suspended cell culture, the NP appeared to take over the whole culture within three batches, and thereby MAb production completely disappeared. In entrapped cell culture, an NP appeared to outgrow the P rapidly only during an exponential growth phase, resulting in a significant decrease in specific MAb productivity, q(MAb), from 11.58 mug/10(6) cell/day to 2.76 mug/10(6) cell/day. However, when the cell growth was limited in entrapped cell culture, the NP no longer outgrew the P rapidly, as indicated by the stable value of q(MAb). In addition, when the cells recovered from the alginate beads by citrate buffer treatment were subcultured in free-suspended cell culture, MAb production rapidly deteriorated and completely disappeared within two batches. Thus, the P present at a small fraction of viable cell concentration in the beginning of the free-suspended cell culture, which were previously entrapped in alginate beads, seemed to be outgrown rapidly by the NP. Taken together, the results obtained from these experiments support the hypothesis that the limited cell growth in entrapped cell culture, which keeps an NP from taking over the whole culture, is responsible, in part, for the improved stability of MAb productivity. (c) 1993 John Wiley & Sons, Inc.  相似文献   

12.
13.
14.
Because of the lack of a cell line expressing on surface and secreting human IgE of known Ag specificity, the construction of a transfectoma line possessing such properties would be useful for studying the roles of surface IgE and the effects of anti-IgE antibodies on IgE-producing B cells. Toward this goal, the human genomic DNA segment encompassing the two exons encoding the membrane anchor peptide of epsilon-chain and their flanking regions was sequenced. Hybrid epsilon and kappa genomic DNA comprising the C regions of human epsilon- and kappa-chains and the H and L chain V regions of the murine mAb BAT123, which reacts with the gp120 envelope protein of HIV-1, were constructed. Mammalian expression vectors containing these fusion genes were used to transfect murine myeloma Sp2/0 cells, and transfectants stably expressing on surface and secreting into culture medium chimeric IgE were obtained. The chimeric IgE showed identical Ag-binding properties as the murine mAb BAT123. Acting in concert with the specific peptide Ag polyvalently coupled to a protein carrier, the chimeric antibody could induce histamine release from human blood basophils. These results demonstrate the potential utility of the transfectoma cells and the chimeric IgE in studying the roles of membrane-bound IgE and effects of anti-IgE antibodies on IgE-producing B cells.  相似文献   

15.
A mouse/human chimeric antibody has been constructed by using variable light and variable heavy regions from a murine hybridoma specific for human carcinoembryonic antigen (CEA) (CEM231.6.7). These V regions were combined with kappa and gamma-1 constant region genes cloned from human lymphocytes. The chimeric constructs were sequentially electroporated into murine non-Ig-producing myeloma (P3.653) and hybridoma (SP2/0) cell. Significant differences were seen in expression levels between the two cell types. High levels of expression (24 to 32 micrograms/ml/10(6) cells) were seen with several of the anti-CEA SP2/0 transfectomas but not with the P3.653 cells. The SP2/0 transfectoma lines were adapted to serum-free, chemically defined media and grown in large scale fermentation cultures where they continued to secrete high levels of antibody. The chimeric antibodies remain reactive against human CEA with affinity constants comparable to that of the parental hybridoma antibody. High level expression will make practical the production of chimeric antibodies for in vivo therapeutic and diagnostic purposes.  相似文献   

16.
Mouse myeloma cells were transfected with pSV2-gpt and pSV2-neo based immunoglobulin expression vectors. Double transfectants were selected using the xanthine-guanine phosphoribosyl transferase (gpt) and the neomycin (neo) selection marker genes. A broad distribution in the level of mouse-human chimeric IgG expression was observed with series of independently isolated transfectoma clones. The relative amounts of secreted to membrane-bound antibodies correlated closely, which suggested, that fluorescence-activated cell sorting could be a valuable tool for the selection of high-yielding production cell lines. However, a single cycle of cell sorting did not steer the cloning process significantly toward cells that produce enhanced amounts of recombinant IgG. Only in cases in which the polyclonal transfectoma population contained a large percentage of nonproducing cells, these were successfully separated from the IgG-producing cell population. (c) 1996 John Wiley & Sons, Inc.  相似文献   

17.
Recombinant Chinese hamster ovary (CHO) parental clones expressing a humanized antibody against S surface antigen of hepatitis B virus were obtained by cotransfection of heavy chain (HC) and light chain (LC) cDNA expression vectors into dihydrofolate reductase (DHFR)-deficient CHO cells. When 23 representative parental clones were subjected to stepwise selection for increasing methotrexate (MTX) resistance, such as 0.02, 0.08, 0.32, and 1.0 microM, their clonal variations in regard to antibody expression were found to be significant. Among 23 parental clones, only one clone (hu17) showed the significant increment of specific antibody productivity (q(Ab)) with increasing MTX concentration up to 0.32 microM. Compared with the parental clone (hu17), the q(Ab) of hu17 resistant at 0.32 microM MTX (hu17-0.32) was enhanced approximately 12.5-fold. To clarify the reason for the occurrence of clonal variations, Southern blot analyses of chromosomal DNAs derived from each amplified clone at 0.32 microM MTX were performed. Only the hu17-0.32 clone did not experience severe genetic rearrangement during gene amplification, and it had only one 49-kb amplification unit including the LC and HC cDNAs. A fluorescent MTX competition assay showed that the resistance against MTX toxicity of the other clones without enhanced q(Ab) at 0.32 microM MTX was obtained by mechanisms such as an impaired MTX transport system. Taken together, the data obtained here show that clonal variations in regard to antibody expression are found to be significant because clones can acquire MTX resistance by mechanisms other than DHFR-mediated gene amplification despite the stepwise selection.  相似文献   

18.
采用基因工程技术 ,将小鼠 6C6单克隆抗体可变区基因与人抗体恒定区基因连接 ,构建了鼠 人 6C6嵌合抗体基因 ,并在CHO细胞中高效表达 .利用ProteinA亲和层析柱从细胞培养上清中分离纯化 6C6嵌合抗体 ,得到电泳纯度大于 98%的 6C6嵌合抗体 ,其重链 (5 5kD)和轻链 (2 4kD)符合IgG相对分子质量的理论值 .Western印迹、细胞免疫荧光和免疫组织化学实验结果均呈阳性 .表明6C6嵌合抗体可识别人乳腺癌细胞表面上的肿瘤相关抗原 ,保持了 6C6单克隆抗体的特性 ,为后续的研究工作奠定了基础  相似文献   

19.
Therapeutic monoclonal antibodies, a highly successful class of biological drugs, are conventionally manufactured in mammalian cell lines. A recent approach to increase the therapeutic effectiveness of monoclonal antibodies has been to combine two or more of them; however this increases the complexity of development and manufacture. To address this issue a method to efficiently express multiple monoclonal antibodies from a single cell has been developed and we describe here the generation of stable cell clones that express high levels of a human monoclonal antibody mixture. PER.C6® cells were transfected with a combination of plasmids containing genes encoding three different antibodies. Clones that express the three corresponding antibody specificities were identified, subcloned, and passaged in the absence of antibiotic selection pressure. At several time points, batch production runs were analyzed for stable growth and IgG production characteristics. The majority (11/12) of subclones analyzed expressed all three antibody specificities in constant ratios with total IgG productivity ranging between 15 and 20 pg/cell/day under suboptimal culture conditions after up to 67 population doublings. The growth and IgG production characteristics of the stable clones reported here resemble those of single monoclonal antibody cell lines from conventional clone generation programs. We conclude that the methodology described here is applicable to the generation of stable PER.C6® clones for industrial scale production of mixtures of antibodies. Biotechnol. Bioeng. 2010;106: 741–750. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号