共查询到10条相似文献,搜索用时 0 毫秒
1.
The interaction of the fusogenic polypeptide segment "B18" from the fertilization protein binding with lipid membranes was investigated by solid state 2H and 31P NMR, and by differential scanning calorimetry. B18 is known to adopt different conformations depending on peptide concentration, ionic conditions, pH and lipid environment. Here, the peptide was studied in its beta-stranded amyloid conformation. According to 31P NMR, the lamellar morphology of the DMPC bilayer remains intact in the presence of B18. In going from low (1:90) to high (1:10) peptide/lipid ratios, an increasing effect on several different 2H-labeled lipid segments was observed, reflecting changes in phase behavior and local dynamics. The strongest influence of B18 was detected at the acyl-chains, while no significant effect on the lipid headgroup conformation was observed. This suggests an insertion of B18 in its fibrillar state into the membrane driven by hydrophobic interactions, rather than a peripheral binding mediated by electrostatics. 相似文献
2.
Bovine lactoferricin (LfcinB) is an antimicrobial peptide released by pepsin cleavage of lactoferrin. In this work, the interaction between LfcinB and acidic phospholipid bilayers with the weight percentage of 65% dimyristoylphosphatidylglycerol (DMPG), 10% cardiolipin (CL) and 25% dimyristoylphosphatidylcholine (DMPC) was investigated as a mimic of cell membrane of Staphylococcus aureus by means of quartz crystal microbalance (QCM) and solid-state 31P and 1H NMR spectroscopy. Moreover, we elucidated a molecular mechanism of the antimicrobial activity of LfcinB by means of potassium ion selective electrode (ISE). It turned out that affinity of LfcinB for acidic phospholipid bilayers was higher than that for neutral phospholipid bilayers. It was also revealed that the association constant of LfcinB was larger than that of lactoferrin as a result of QCM measurements. 31P DD-static NMR spectra indicated that LfcinB interacted with acidic phospholipid bilayers and bilayer defects were observed in the bilayer systems because isotropic peaks were clearly appeared. Gel-to-liquid crystalline phase transition temperatures (Tc) in the mixed bilayer systems were determined by measuring the temperature variation of relative intensities of acyl chains in 1H MAS NMR spectra. Tc values of the acidic phospholipid and LfcinB-acidic phospholipid bilayer systems were 21.5 °C and 24.0 °C, respectively. To characterize the bilayer defects, potassium ion permeation across the membrane was observed by ISE measurements. The experimental results suggest that LfcinB caused pores in the acidic phospholipid bilayers. Because these pores lead the permeability across the membrane, the molecular mechanism of the antimicrobial activity could be attributed to the pore formation in the bacterial membrane induced by LfcinB. 相似文献
3.
Hazime Saitô 《生物化学与生物物理学报:生物膜》2003,1616(2):127-136
We have recorded site-directed solid-state 13C NMR spectra of [3-13C]Ala- and [1-13C]Val-labeled bacteriorhodopsin (bR) as a typical membrane protein in lipid bilayers, to examine the effect of formation of two-dimensional (2D) lattice or array of the proteins toward backbone dynamics, to search the optimum condition to be able to record full 13C NMR signals from whole area of proteins. Well-resolved 13C NMR signals were recorded for monomeric [3-13C]Ala-bR in egg phosphatidylcholine (PC) bilayer at ambient temperature, although several 13C NMR signals from the loops and transmembrane α-helices were still suppressed. This is because monomeric bR reconstituted into egg PC, dimyristoylphosphatidylcholine (DMPC) or dipalmytoylphosphatidylcholine (DPPC) bilayers undergoes conformational fluctuations with frequency in the order of 104-105 Hz at ambient temperature, which is interfered with frequency of magic angle spinning or proton decoupling. It turned out, however, that the 13C NMR signals of purple membrane (PM) were almost fully recovered in gel phase lipids of DMPC or DPPC bilayers at around 0 °C. This finding is interpreted in terms of aggregation of bR in DMPC or DPPC bilayers to 2D hexagonal array in the presence of endogenous lipids at low temperature, resulting in favorable backbone dynamics for 13C NMR observation. It is therefore concluded that [3-13C]Ala-bR reconstituted in egg PC, DMPC or DPPC bilayers at ambient temperature, or [3-13C]Ala- and [1-13C]Val-bR at low temperature gave rise to well-resolved 13C NMR signals, although they are not always completely the same as those of 2D hexagonal lattice from PM. 相似文献
4.
Chul Kim 《生物化学与生物物理学报:生物膜》2009,1788(7):1482-1496
Dynamic structures of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers induced in oriented lipid membranes, which are interacting with membrane-acting antimicrobial peptides (AMPs), magainin-2 and aurein-3.3, were explored by 31P and 2H solid-state NMR (ssNMR) spectroscopy. Various types of phospholipid systems, such as POPC-d31, POPC-d31/POPG, and POPC-d31/cholesterol, were investigated to understand the membrane disruption mechanisms of magainin-2 and aurein-3.3 peptides at various peptide-to-lipid (P:L) ratios. The experimental lineshapes of anisotropic 31P and 2H ssNMR spectra measured on these peptide-lipid systems were simulated reasonably well by assuming the presence of supramolecular lipid assemblies, such as toroidal pores and thinned bilayers, in membranes. Furthermore, the observed decrease in the anisotropic frequency span of either 31P or 2H ssNMR spectra of oriented lipid bilayers, particularly when anionic POPG lipids are interacting with AMPs at high P:L ratios, can directly be explained by a thinned membrane surface model with fast lateral diffusive motions of lipids. The spectral analysis protocol we developed enables extraction of the lateral diffusion coefficients of lipids distributed on the curved surfaces of pores and thinned bilayers on a few nanometers scale. 相似文献
5.
Pointer-Keenan CD Lee DK Hallok K Tan A Zand R Ramamoorthy A 《Chemistry and physics of lipids》2004,132(1):47-54
Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model membranes. 31P NMR experiments on multilamellar vesicles and mechanically aligned bilayers were used to measure the degree of protein-induced disorder in the lipid headgroup region while 2H NMR data provided the disorder caused by the protein in the hydrophobic core of the bilayers. Our results suggest that MBP and its charge isomers neither fragment nor significantly disrupt DMPC, POPC, POPC:POPG, and POPE bilayers. These results demonstrate that the MBP-induced fragmentation of POPC bilayers is due to the freeze-thaw cycles used in the preparation of multilamellar vesicles and not due to intrinsic protein-lipid interactions. 相似文献
6.
Martin Šala Damjan Makuc Jana Kolar Janez Plavec Boris Pihlar 《Carbohydrate research》2011,346(4):488
Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system. 相似文献
7.
Joanna R. Long Frank D. Mills Omjoy K. Ganesh Vijay C. Antharam R. Suzanne Farver 《生物化学与生物物理学报:生物膜》2010,1798(2):216-2965
Lung surfactant protein B (SP-B) is a lipophilic protein critical to lung function at ambient pressure. KL4 is a 21-residue peptide which has successfully replaced SP-B in clinical trials of synthetic lung surfactants. CD and FTIR measurements indicate KL4 is helical in a lipid bilayer environment, but its exact secondary structure and orientation within the bilayer remain controversial. To investigate the partitioning and dynamics of KL4 in phospholipid bilayers, we introduced CD3-enriched leucines at four positions along the peptide to serve as probes of side chain dynamics via 2H solid-state NMR. The chosen labels allow distinction between models of helical secondary structure as well as between a transmembrane orientation or partitioning in the plane of the lipid leaflets. Leucine side chains are also sensitive to helix packing interactions in peptides that oligomerize. The partitioning and orientation of KL4 in DPPC/POPG and POPC/POPG phospholipid bilayers, as inferred from the leucine side chain dynamics, is consistent with monomeric KL4 lying in the plane of the bilayers and adopting an unusual helical structure which confers amphipathicity and allows partitioning into the lipid hydrophobic interior. At physiologic temperatures, the partitioning depth and dynamics of the peptide are dependent on the degree of saturation present in the lipids. The deeper partitioning of KL4 relative to antimicrobial amphipathic α-helices leads to negative membrane curvature strain as evidenced by the formation of hexagonal phase structures in a POPE/POPG phospholipid mixture on addition of KL4. The unusual secondary structure of KL4 and its ability to differentially partition into lipid lamellae containing varying levels of saturation suggest a mechanism for its role in restoring lung compliance. 相似文献
8.
The role of irregular unit,GAAS, on the secondary structure of Bombyx mori silk fibroin studied with 13C CP/MAS NMR and wide-angle X-ray scattering 下载免费PDF全文
Asakura T Sugino R Okumura T Nakazawa Y 《Protein science : a publication of the Protein Society》2002,11(8):1873-1877
Bombyx mori silk fibroin is a fibrous protein whose fiber is extremely strong and tough, although it is produced by the silkworm at room temperature and from an aqueous solution. The primary structure is mainly Ala-Gly alternative copolypeptide, but Gly-Ala-Ala-Ser units appear frequently and periodically. Thus, this study aims at elucidating the role of such Gly-Ala-Ala-Ser units on the secondary structure. The sequential model peptides containing Gly-Ala-Ala-Ser units selected from the primary structure of B. mori silk fibroin were synthesized, and their secondary structure was studied with (13)C CP/MAS NMR and wide-angle X-ray scattering. The (13)C isotope labeling of the peptides and the (13)C conformation-dependent chemical shifts were used for the purpose. The Ala-Ala units take antiparallel beta-sheet structure locally, and the introduction of one Ala-Ala unit in (Ala-Gly)(15) chain promotes dramatical structural changes from silk I (repeated beta-turn type II structure) to silk II (antiparallel beta-sheet structure). Thus, the presence of Ala-Ala units in B. mori silk fibroin chain will be one of the inducing factors of the structural transition for silk fiber formation. The role of Tyr residue in the peptide chain was also studied and clarified to induce "locally nonordered structure." 相似文献
9.
Vijay C. Antharam Anna Kuznetsova Frank D. Mills Edward Sternin 《生物化学与生物物理学报:生物膜》2008,1778(11):2544-2554
Lung surfactant protein B (SP-B) is critical to minimizing surface tension in the alveoli. The C-terminus of SP-B, residues 59-80, has much of the surface activity of the full protein and serves as a template for the development of synthetic surfactant replacements. The molecular mechanisms responsible for its ability to restore lung compliance were investigated with circular dichroism, differential scanning calorimetry, and 31P and 2H solid-state NMR spectroscopy. SP-B59-80 forms an amphipathic helix which alters lipid organization and acyl chain dynamics in fluid lamellar phase 4:1 DPPC:POPG and 3:1 POPC:POPG MLVs. At higher levels of SP-B59-80 in the POPC:POPG lipid system a transition to a nonlamellar phase is observed while DPPC:POPG mixtures remain in a lamellar phase. Deuterium NMR shows an increase in acyl chain order in DPPC:POPG MLVs on addition of SP-B59-80; in POPC:POPG MLVs, acyl chain order parameters decrease. Our results indicate SP-B59-80 penetrates deeply into DPPC:POPG bilayers and binds more peripherally to POPC:POPG bilayers. Similar behavior has been observed for KL4, a peptide mimetic of SP-B which was originally designed using SP-B59-80 as a template and has been clinically demonstrated to be successful in treating respiratory distress syndrome. The ability of these helical peptides to differentially partition into lipid lamellae based on their degree of monounsaturation and subsequent changes in lipid dynamics suggest a mechanism for lipid organization and trafficking within the dynamic lung environment. 相似文献
10.
The 3D structures or dynamic feature of fully hydrated membrane proteins are very important at ambient temperature, in relation to understanding their biological activities, although their data, especially from the flexible portions such as surface regions, are unavailable from X-ray diffraction or cryoelectron microscope at low temperature. In contrast, high-resolution solid-state NMR spectroscopy has proved to be a very convenient alternative means to be able to reveal their dynamic structures. To clarify this problem, we describe here how we are able to reveal such structures and dynamic features, based on intrinsic probes from high-resolution solid-state NMR studies on bacteriorhodopsin (bR) as a typical membrane protein in 2D crystal, regenerated preparation in lipid bilayer and detergents. It turned out that their dynamic features are substantially altered upon their environments where bR is present. We further review NMR applications to study structure and dynamics of a variety of membrane proteins, including sensory rhodopsin, rhodopsin, photoreaction centers, diacylglycerol kinases, etc. 相似文献