首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An in vitro study has been made of the mechanism by which a suppressor T cell, that is induced in lymph nodes by a syngeneic splenic cell antigen, prevents generation of cytotoxic T cells specific for hapten-altered self antigens. When popliteal lymph node cells exposed in vivo to syngeneic splenic cells were immunized in vitro with heat-treated syngeneic TNP-coupled thymocytes and excess helper factors, the Ts remained inactive. In this condition the exposed popliteal lymph node cells routinely demonstrated approximately twice the CTL response developed by lymph node cells from normal mice. Nevertheless, when triggered in vitro by splenic antigen on either X-irradiated B or T cells, the exposed but not the normal lymph node cells exhibited reduced hapten-altered self-specific CTL responses. Furthermore, T cells within spleen cell-exposed popliteal lymph node cell populations when reexposed to splenic T cells made a factor that was found to be suppressive of CTL generation by normal lymph node cells in vitro. The nondialyzable T-cell suppressor factor (TsF) did not appear to act on lymph node precursor CTLs, nor on helper T cells but instead acted at the level of utilization of helper factors in the development of CTLs. In an examination of the effect of TsF on cellular replication, TsF was found to be nontoxic for CTLL-20, an IL-2-dependent T cell, and it did not hinder the uptake of IL-2 by receptor blockade of this cell. Nevertheless, the replication of CTLL-20 that is IL-2 driven was diminished in the presence of TsF. Similarly, TsF was found to be inhibitory for T-cell proliferation stimulated by mitogen but had no effect on a B myeloma cell proliferative response. Thus, TsF appears to act as an inhibitor of a T cell's capability to replicate despite the presence of the stimulus for replication, namely, IL-2.  相似文献   

2.
The immunological tolerance that is induced in lymph nodes that have been exposed to syngeneic spleen cells has been examined. Development of cytotoxic T lymphocytes was used to assess the immunological status of the lymph node cells. The tolerance was studied from the viewpoint of its induction, its activation, and its specificity. We had already reported that injecting either T or B cells of splenic origin into a regional lymph node environment a week prior to immunization for CTL to hapten-altered self antigens prevents development of the CTL. Here, we confirm that syngeneic splenic cells but not lymph node cells will induce the suppression provided that spleen cells are not coupled with hapten. We now report that splenic cells that cannot replicate or synthesize and secrete protein are capable of inducing the suppression. The data suggest a preformed surface marker peculiar to spleen cells and perhaps on cells that traverse the thymus induces local tolerance that is mediated by suppressor cells. Triggering the induced suppressor T cells (previously identified as CD8-) was achieved by syngeneic spleen cells as well as by H-2-compatible, Mls-disparate spleen cells but not by syngeneic lymph node cells or apparently by allogeneic spleen cells. Furthermore, triggering suppression was achieved by hapten-coupled syngeneic spleen cells whereas such cells would not induce the suppression. Thus, activating the suppressor cells requires reexposure to splenic cells of the proper MHC haplotype, unaltered or coupled with either TNP or FITC. Once triggered, the suppression was manifested toward CTL generation against hapten-coupled syngeneic antigens on either spleen or lymph node cells but not against allogeneic antigens. Thus, the specificity of the tolerance was directed to altered self antigens despite its induction by unaltered spleen antigen. Furthermore, for suppression to be seen the spleen antigen was not required to be on the hapten-coupled syngeneic cells used for the CTL immunization. The relationship of the splenic cell "antigen" to hapten-altered self antigens and to other surface markers and its site of acquisition within the body and its significance for cell homing have become intriguing questions of importance. This information has been discussed from the viewpoint of its applicability to autoimmune diseases as well as to cessation of inflammatory reactions that may be mediated by lymph node cells.  相似文献   

3.
The involvement of a third-order suppressor T cell population (Ts3) in the suppression of in vitro PFC responses was analyzed. It was shown that Ts2 effector-phase suppressor cells, induced by the i.v. injection of NP-coupled syngeneic spleen cells, require a third suppressor T cell population to effect NPb idiotype-specific suppression of an in vitro B cell response. This Ts3 population was shown to be present in NP-primed but not unprimed donors. The Ts3 population specifically binds NP and is Lyt-1-, Lyt-2+, I-J+ and bears NPb idiotypic determinants. The involvement of the Ts3 population in a suppressor pathway that requires recognition of idiotypic determinants is discussed.  相似文献   

4.
Two suppressor cell populations that interact to down-regulate in vivo development of the cytolytic T-cell (CTL) response to trinitrophenyl-modified syngeneic spleen cells (TNP-SC) have been further characterized. Suppressor cells induced by the iv injection of trinitrophenyl-modified syngeneic spleen cells possess Thy 1.2 antigen. Their precursors are insensitive to pretreatment of host animals with cyclophosphamide (CY). Suppressor cells that arise after dermal sensitization with trinitrochlorobenzene are also Thy 1.2 antigen positive but their precursors are sensitive to pretreatment with CY. These characteristics of the two suppressor T cells (Ts) are identical to those of the two Ts that are generated by similar methodologies and that together suppress contact sensitivity (CS) to picryl chloride. Neither the CS nor CTL response was suppressed when host animals possessed only one set of Ts. In contrast to suppression of CS at the efferent phase, development of CTL was suppressed only when the two Ts were present early during sensitization (afferent phase). Since the results point to several similarities between the two sets of Ts that are active in the down-regulation of the CS and CTL responses, it is suggested that the two dissimilar immune responses directed to the same hapten, namely CS and CTL, may be controlled by the same suppressor cells. Since it appears that the two sets of Ts interact to affect different phases of the CS and CTL responses, down-regulation of each must be accomplished through different mechanisms.  相似文献   

5.
The parenteral injection of ligand-coupled syngeneic spleen cells has profound effects on immune responsiveness. In this regard, it was examined whether the primed in vitro trinitrophenol (TNP)-specific cytotoxic T-lymphocyte (CTL) responses observed in splenic T-cell populations from mice injected intravenously (iv) with syngeneic TNP-modified spleen cells (TNP-SC) are related to the efferent-acting suppressor-T-cell (Ts) activity observed in splenocytes from iv primed mice. Treatment of mice with cyclophosphamide, adult thymectomy, or monoclonal anti-I-J antiserum prior to the iv injection of TNP-SC was found to eliminate the ability of splenic Ts from these mice to suppress the passive transfer of delayed-type hypersensitivity (DTH) mediated by trinitrochlorobenzene-immune T cells. In contrast, spleen cells from these pretreated mice showed no impairment in the development of augmented TNP-specific CTL responses upon in vitro restimulation with TNP-SC. Separation of the two activities was also achieved in a kinetic analysis. It is concluded that specific enhancement of CTL responsiveness induced by the iv injection of TNP-SC is related to the expansion of a population prelytic Lyt 2+ CTL effector cells which does not appear to contain efferent-acting Lyt 2+ Ts active in suppressing DTH expression.  相似文献   

6.
Down-regulation of the development of CTL has been studied in mice both in vivo and in vitro. To generate CTL to hapten-altered self Ag in vivo, an immunization protocol has been used in which the host's Th cells are stimulated by a minor locus histocompatibility Ag (Mlsd) and its precursor CTL are activated by trinitrophenylated syngeneic spleen cells. Injecting the H-2 compatible Mls-disparate spleen cells along with the TNP-coupled self cells into the hind paws causes TNP-self specific CTL to appear in popliteal lymph nodes within 5 days. We have previously reported that inducing Ts cells by i.v. injecting Mlsd-bearing cells prevents in vivo generation of TNP-self specific CTL after immunization in this way. Here the induced Ts cell as well as the mechanism by which it functions have been further examined. The suppression was seen to extend to allogeneic as well as TNP-self Ag, provided the Mlsd-tolerized animal was reexposed to Mlsd-bearing cells at the time of immunization for CTL. By transferring the Mlsd-induced suppression adoptively we have learned that the splenic suppressor cell bears Thy-1.2 as well as Lyt-1.1 Ag and inhibits the generation of CTL at the afferent limb. In addition, Mlsd-induced PEC of Mlsd-tolerized mice, but not of normal mice, mediated suppression of development of CTL in vivo. The active cells within the tolerized PEC have been identified as T cells and macrophages (M phi). Furthermore, PEC from mice tolerized to Mlsd suppressed generation of CTL directed toward TNP-self targets in vitro. T cells and M phi separated from PEC of Mlsd-tolerized mice achieved suppression best in culture when present together. In addition, Lyt-1+ splenic cells from tolerized but not normal mice cooperated to down-regulate CTL generation in vitro with peritoneal M phi from either tolerized or normal mice. Supernatants of 24- to 72-h cultures of PEC from tolerized mice were suppressive of CTL generation when incorporated at 40 to 50% of culture volume. Supernatants of T cells from tolerized PEC or spleen were suppressive in culture only when M phi from normal mice were also present. To achieve suppression dialyzed supernatants of M phi from tolerized mice could replace the M phi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
We have examined the underlying mechanisms accounting for the enhanced in vitro TNP-specific cytotoxic T-lymphocyte (CTL) response following the parenteral injection of syngeneic hapten-modified lymphoid cells. Augmented CTL activity noted following parenteral injection (iv vs sc) of 2,4,6-trinitrophenol-modified syngeneic spleen cells (TNP-SC) is most apparent when limiting numbers of TNP-modified stimulator cells are used in the in vitro sensitization phase. Enhanced CTL responses seen following sc and iv priming is due to distinct mechanisms. Spleen and lymph node (LN) cells from sc primed mice were found to contain significant levels of radioresistant helper activity upon coculture with either viable normal spleen cells in bulk culture or with thymocytes as the source of precursor CTLs in a limiting dilution assay. The helper activity was found to be mediated by a Lyt 1+2- T cells. In addition, Lyt 2-depleted spleen and LN cells from sc primed BALB/c mice could restore the ability of tolerant spleen cells from 2,4,6-trinitrobenzenesulfonic acid (TNBS)-injected BALB/c mice to generate TNP-specific CTLs. Conversely, Lyt 2-depleted spleen and LN cells from iv primed mice provided no measurable helper activity either in bulk culture or in the limiting dilution assay and did not restore the ability of TNBS-tolerant BALB/c spleen cells to generate TNP-specific CTLs. CTL priming via the iv route was found to be completely antigen specific as iv injection of either 2,4-dinitrophenol (DNP)- or fluorescein isothiocyanatel (FITC)-modified cells caused no enhanced CTL activity. Priming via the sc route exhibited a unique specificity pattern as it was shown that sc injection of both TNP-SC and DNP-SC, but not FITC-SC, resulted in enhanced TNP-specific CTL responses. CTL T-helper (Th)-cell induction via the sc route was correlated with (1) the presence of H-2 I region determinants on the inducer cells as the sc injection of TNP-modified erythrocytes led to no enhanced CTL responses or CTL Th activity (while iv injection of TNP-erythrocytes did lead to enhanced CTL responses without detectable helper activity) and (2) the detection of both hapten-specific T-cell proliferation and Interleukin 2 (IL-2) production upon restimulation in culture. We conclude that the sc injection of TNP-SC leads preferentially to an increase of specific Lyt 1+ helper activity, while iv injection leads preferentially to an apparent expansion of Lyt 2+ prelytic effector CTLs.  相似文献   

8.
Antigen-specific, IgE isotype-selective suppression is induced following treatment of mice with a high-molecular-weight glutaraldehyde-polymerized ovalbumin preparation (OA-POL). The results show that the suppression is mediated by Lyt 1+,2,3- cells residing in the spleen. Adoptive transfer experiments indicate that Lyt 2,3+ or Lyt 1,2,3+ cells are not required for the establishment of suppression by these Lyt 1+,2,3- suppressor T cells (Ts). Treatment of OA-POL-induced Ts cells with anti-I-Jk serum and complement does not affect their ability to suppress. In marked contrast, spleen cells from animals treated with a single course of OA-POL almost 300 days previously, were shown to contain boosterable memory suppressor T cells (Tsm) which display the Lyt 1-,2,3+ phenotype. The activity of both Ts and Tsm cells appears to result from stimulation by determinants common to native OA and OA-POL rather than by idiotypic determinants expressed on anti-OA antibodies.  相似文献   

9.
We have been examining the mechanisms that control in vivo development and down regulation of cytolytic T lymphocytes (CTL) to trinitrophenyl (TNP)-altered self antigens. In vivo generation of hapten-specific CTL requires an auxiliary antigenic stimulus, which can be provided by H-2 compatible but Mls-disparate cells. These experiments were designed to study the effect of tolerization with such Mls-disparate cells on CTL development. C3H/HeN (H-2k, Mlsc ) mice sensitized in the footpads with C3H-TNP spleen cells plus CBA/J (H-2k, Mlsd ) spleen cells develop CTL in the draining lymph nodes that will lyse 51Cr-labeled TNP-modified C3H targets. However, we have found that if C3H/HeN mice are given tolerizing doses of CBA/J spleen cells 5 to 7 days before sensitization, a splenic suppressor T cell (Ts) appears. This Ts will suppress CTL development in its tolerant host, and can be transferred adoptively to function in naive mice. Ts and its precursor are cyclophosphamide insensitive and therefore different from the naturally existing suppressor cell present in mice. When triggered by cells with Mlsd , the Ts produces a factor (TsF) that hinders helper factors from functioning in an in vitro CTL assay. Furthermore, TsF acts to prevent utilization of IL 2 by an IL 2-dependent cell line. Thus, evidence has been provided that the in vivo generation of CTL toward hapten-altered self can be down regulated at the level of helper signals by a Ts. The latter is inducible by the Mls-disparate cells that are needed at a different site to trigger the helper factors in this CTL system.  相似文献   

10.
Primary and secondary cytotoxic T lymphocyte responses to minor alloantigens can be suppressed by priming host mice with a high dose (10(8) cells) of alloantigenic donor spleen cells (SC). Such suppression is antigen specific and transferable into secondary hosts with T cells. One interpretation of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments described here exclude veto T cell participation in transferable alloantigen-specific suppression, and demonstrate the operation of an alloantigen-specific host-derived T suppressor (Ts) cell. The origin of the Ts has been studied directly by using Thy-1-disparate BALB/c mice. The cell responsible for the transfer of suppression of a secondary CTL response to B10 minors was of the host Thy-1 allotype, and so originated in the host spleen and was not introduced in the priming inoculum. Secondly, antigen-specific Ts generated in CBA female mice against B10 minors could act on CTL responses to an unequivocally non-cross-reactive-third party antigen (H-Y), provided the two antigens were expressed on the same cell membrane. Such third-party suppression is incompatible with the operation of veto T cells. Depletion of Thy-1.2+ or Lyt-2+ cells from the suppression-inducing donor SC inoculum did not abrogate suppression induction in BALB/c mice; instead, suppression was enhanced. The demonstration of veto cell activity in similarly primed mice by other groups of investigators indicates that both types of suppression may operate. However, our results show that only antigen-specific Ts can mediate the transferable suppression of CTL responses to alloantigens.  相似文献   

11.
Intragastric administration of the hapten trinitrochlorobenzene (TNCB) suppresses development of contact sensitivity (CS) to attempted epicutaneous sensitization with TNCB. Suppression induced by feeding TNCB is hapten specific and can be transferred to normal animals with lymphoid cells from fed mice. The lymphoid cells in hapten-fed mice that cause suppression of CS have been identified as Thy-1.2-positive cells in spleen and mesenteric nodes. The suppression with Peyer's patch cells from hapten-fed mice appears to be attributable to cells bearing Thy-1.2 antigen (T cell) and to cells with surface Ig (B cell). Feeding TNCB induces an efferent-acting suppressor T cell (Ts eff), as well as an intermediary acceptor T cell (T acc) with which it interacts to block adoptive transfer of CS with immune cells. Ts eff emanating from hapten-fed mice was identified by its specificity for the hapten, insensitivity to pretreatment with cyclophosphamide (CY), ability to produce soluble suppressor factor (SSF), and requirement for T acc to be functional. The presence of T acc in hapten-fed mice, on the other hand, was confirmed by its sensitivity to treatment with CY, interaction with Ts eff or SSF, and the ability to produce nonspecific inhibitor of TDTH cells. Thus, the suppressor T cells that are induced by administering the hapten intragastrically appear to function much like the cells of the suppressor T cell cascade that are induced by giving hapten via parenteral routes.  相似文献   

12.
T cells (Ts-eff) induced in BALB/c mice by subcutaneous (sc) growth of syngeneic Meth A tumors can adoptively suppress the effector phase of delayed-type hypersensitivity (DTH) in Bacillus Calmette-Guérin (BCG)-primed and unprimed recipients which have been sensitized with irradiated Meth A cells but they do not inhibit the augmented DTH response in recipients inoculated with cyclophosphamide (CY) 2 days prior to sensitization. By reconstituting CY-treated immunized recipients with selected spleen cell populations, it has been demonstrated that Ts-eff suppress DTH by interacting with a second or auxiliary suppressor cell population present in immune but not normal spleens. These auxiliary suppressor cells (Ts-aux) are Thy+, Lyt 1-2+ and I-J+, phenotypically similar to Ts-eff. Their activity is not influenced by B-cell depletion. Unlike Ts-eff, Ts-aux do not bear receptors specific for Meth A cells. Ts-aux and Ts-eff share similar sensitivity to irradiation and high dose (100 mg/kg) CY but unlike Ts-eff, Ts-aux are cortisone sensitive, nondividing, nonadherent cells which are absent from the thymus. The phenotype and mechanism of action of Ts-aux resemble those of the auxiliary or Ts3 cells defined in models of contact sensitivity, DTH to simple haptens, and in vitro antibody responses.  相似文献   

13.
Inability to develop CTL in vivo to hapten-altered self can be attributed in part to an inhibitor of interleukin 2 (IL 2) that is present in the serum of normal mice. We have shown earlier that hapten-specific CTL can be generated in C3H mice (H-2k, MIsc) provided CBA/J (H-2k MIsd) spleen cells are injected simultaneously with hapten-modified syngeneic spleen cells into the hind foot paws. In efforts to determine whether serum levels of the inhibitor of IL 2 are altered as a consequence of this successful immunization method, we have compared the activity of the inhibitor in serum at intervals after the injection of syngeneic spleen cells, CBA spleen cells, or TNP-C3H spleen cells alone or together with CBA spleen cells, by using a murine IL 2-dependent, cloned cytotoxic T cell line, CT-6. The results indicate that inhibitor was neutralized optimally 48 to 72 hr after injection of TNP-C3H spleen cells mixed with CBA/J spleen cells. The order in which neutralization occurred was as follows: TNP-C3H cells + CBA/J cells greater than CBA cells greater than TNP-C3H cells greater than normal C3H spleen cells. Furthermore, supernatants from cultures of C3H lymph node cells stimulated in vivo with CBA/J cells also contained IL 2 activity. Thus, injection of CBA/J cells with TNP-modified syngeneic spleen cells produces IL 2 in vivo in sufficient quantity to neutralize the activity of the inhibitor as well as to facilitate the maturation of pre-CTL into hapten-altered self-specific CTL.  相似文献   

14.
Pertussis toxin (PT), the major toxin produced by Bordetella pertussis, has been reported both to enhance and to suppress immune responsiveness. These findings suggested that PT contributes to the virulence of B. pertussis through mechanisms involving immune regulation. We report that PT suppressed both the primary and the secondary cytotoxic T-lymphocyte (CTL) responses of mouse spleen cells cultured against two different allogeneic stimulator spleen cells in vitro. This suppression was dependent on the dose of PT used. PT must be present during the initial stages (within the first 24 hr) of CTL generation. Soluble factor(s) obtained from spleen cells preexposed to PT did not suppress the CTL response. Suppression of the CTL response observed was not due to depletion of the antigen by PT. The cytotoxic activity of CTL clones could not be suppressed by PT. The analysis of responder spleen cells, fractionated by anti-immunoglobulin panning techniques, provided evidence that L3T4-, Lyt 2+ cells mediate the PT-induced immunosuppression. We propose that suppression of the CTL response by PT is generated through the activation of L3T4-, Lyt 2+ suppressor T lymphocytes.  相似文献   

15.
The immunosuppression that occurs in mice experimentally infected with African trypanosomiasis has been examined further. In the present study we have examined lymph node cells from Trypanosoma rhodesiense-infected C57Bl/6J mice for the ability to produce mitogen induced antigen-nonspecific suppressor T cells (Ts). Inguinal, mesenteric, and brachial lymph node cells were harvested from uninfected control mice and from mice at different periods of infection. These cells were cultured with or without concanavalin A (Con A) for 48 hr to induce Ts activity. After stimulation, the control and infected lymph node cells were passed over Sephadex G-10 columns to remove suppressor macrophages that arise during the infection from Con A-induced Ts. The column passed cells were then added to normal mouse responder spleen cells in a primary in vitro antibody response culture system with sheep erythrocytes (SRBC) as antigen. The resultant plaque-forming cell responses to SRBC indicated that Ts function was not induced in infected lymph node cell populations. However, early in the infection, a stimulatory signal was provided by both the untreated and Con A-treated infected lymph node cells, which was lost in the terminal stage. Determinations of T cell subpopulations revealed that the infected Lyt 2.2-bearing subpopulation was not significantly altered from normal controls. We conclude that T. rhodesense infected mice fail to mount normal lymph node cell antigen nonspecific Ts responses and that this loss of activity may be due to an intrinsic dysfunction in the suppressor T cell population.  相似文献   

16.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

17.
The effect of CY pretreatment on the ability of OVA feeding to induce both tolerance and active suppression was examined in mice. CY-pretreated, OVA fed mice were fully unresponsive in both OVA-specific DTH and antibody responses, but, in contrast to untreated OVA-fed mice, did not transfer suppression to normal recipients via splenic lymphocytes. Restoration of Ts activity in CY-pretreated mice was accomplished by reconstitution with normal T cells before antigen feeding, indicating that the CY effect was at the Ts precursor level. In addition, it was found that certain OVA-specific immune parameters (DTH and splenic PFC responses) in recipient mice were susceptible to suppression by transfer of spleen cells from OVA-fed donors, whereas other measures (antigen-induced T cell proliferation and serum antibody titers) were not. The data suggest that CY-sensitive Ts are not necessary for either induction or maintenance of specific tolerance after OVA feeding.  相似文献   

18.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

19.
The ability of an azobenzenearsonate (ABA)-specific suppressor T cell factor, a soluble extract from first order suppressor T cells (Ts1), and suppressor molecules produced by a long-term T cell hybridoma to regulate ABA-specific granuloma formation was studied. ABA-derivatized syngeneic spleen cells (ABA-SC) administered subcutaneously induced persistent delayed-type hypersensitivity (DTH) responses, detected by footpad swelling and hapten-specific granuloma formation by 72 and 96 hr after challenge with ABA-bovine serum albumin coupled to polyacrylamide beads (ABA-BSA-PAB). Soluble factors from ABA-specific Ts1 prevented DTH and granulomatous development after subcutaneous administration of ABA-SC. Moreover, the in vivo administration of a factor that is derived from a Ts1 functioning hybrid cell line induced a second set of suppressor cells (Ts2) that upon transfer to syngeneic ABA-primed mice were able to inhibit granuloma formation in the footpad, as well as in the gastrointestinal tract after challenge with ABA-BSA-PAB. These experiments demonstrate the dependence of the granulomatous reaction on T cell-mediated events, as well as the potential therapeutic efficacy of an antigen-specific suppressor T cell factor and a hybridoma T cell product in limiting antigen-specific granuloma formation in vivo.  相似文献   

20.
The cellular and molecular characteristics of anti-idiotype-induced suppression have been investigated. We have shown that i.v. immunization of A/J or C.AL-20 mice with rabbit antibodies against the major cross-reactive idiotype on A/J anti-ABA antibodies induces splenic suppressor T cells (Ts) able to suppress T cell-mediated cytolytic and delayed-type hypersensitivity responses to ABA. In these studies, we compare the T suppressor activity manifested by anti-Id-induced suppressor cells with that described previously after conventional antigen priming. Results indicate that i.v. injection of anti-idiotypic antibodies primes for efferent level Ts; in contrast, i.v. administration of ABA-coupled cells induces afferent level suppressor cells. Soluble cell lysates, containing suppressor factor(s) derived from these anti-idiotype-induced Ts, can also mediate suppression of T cell immune responses in an efferent manner. Factor-mediated suppression is MHC-unrestricted and is also observed in mice pretreated with cyclophosphamide, suggesting that this activity is analogous to third-order suppression. Furthermore, this factor suppresses the T cell-mediated DTH and CTL responses in an antigen-nonspecific but Igh-restricted manner. These latter results suggest that the cellular elements conferring antigen specificity and Igh restriction are separate. The implications of these findings to the relationship between idiotypic elements, antigen-binding structures, and Igh restriction elements on immunoregulatory T cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号