首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Yuri Silkin 《BBA》2007,1767(2):143-150
Succinate dehydrogenase (complex II or succinate:ubiquinone oxidoreductase) is a tetrameric, membrane-bound enzyme that catalyzes the oxidation of succinate and the reduction of ubiquinone in the mitochondrial respiratory chain. Two electrons from succinate are transferred one at a time through a flavin cofactor and a chain of iron-sulfur clusters to reduce ubiquinone to an ubisemiquinone intermediate and to ubiquinol. Residues that form the proximal quinone-binding site (QP) must recognize ubiquinone, stabilize the ubisemiquinone intermediate, and protonate the ubiquinone to ubiquinol, while minimizing the production of reactive oxygen species. We have investigated the role of the yeast Sdh4p Tyr-89, which forms a hydrogen bond with ubiquinone in the QP site. This tyrosine residue is conserved in all succinate:ubiquinone oxidoreductases studied to date. In the human SDH, mutation of this tyrosine to cysteine results in paraganglioma, tumors of the parasympathetic ganglia in the head and neck. We demonstrate that Tyr-89 is essential for ubiquinone reductase activity and that mutation of Tyr-89 to other residues does not increase the production of reactive oxygen species. Our results support a role for Tyr-89 in the protonation of ubiquinone and argue that the generation of reactive oxygen species is not causative of tumor formation.  相似文献   

2.
Production of reactive oxygen species (ROS) by the mitochondrial respiratory chain is considered to be one of the major causes of degenerative processes associated with oxidative stress. Mitochondrial ROS has also been shown to be involved in cellular signaling. It is generally assumed that ubisemiquinone formed at the ubiquinol oxidation center of the cytochrome bc(1) complex is one of two sources of electrons for superoxide formation in mitochondria. Here we show that superoxide formation at the ubiquinol oxidation center of the membrane-bound or purified cytochrome bc(1) complex is stimulated by the presence of oxidized ubiquinone indicating that in a reverse reaction the electron is transferred onto oxygen from reduced cytochrome b(L) via ubiquinone rather than during the forward ubiquinone cycle reaction. In fact, from mechanistic studies it seems unlikely that during normal catalysis the ubisemiquinone intermediate reaches significant occupancies at the ubiquinol oxidation site. We conclude that cytochrome bc(1) complex-linked ROS production is primarily promoted by a partially oxidized rather than by a fully reduced ubiquinone pool. The resulting mechanism of ROS production offers a straightforward explanation of how the redox state of the ubiquinone pool could play a central role in mitochondrial redox signaling.  相似文献   

3.
Dihydrolipoic acid (DHLA) is a constituent of cellular energy metabolism, where it cycles between the oxidized and reduced form. The two thiol residues of DHLA make this biomolecule susceptible to most radical species and prevent Fenton-type reactions by chelating free iron. In this study we present a novel mode of action by which DHLA exerts antioxidant function in combination with coenzyme Q (ubiquinone). DHLA was found to reduce ubiquinone to ubiquinol by the transfer of a pair of electrons, thereby increasing the antioxidant capacity of coenzyme Q in biomembranes. In addition, ubisemiquinone, which was earlier shown to be an active oxygen radical source when existing in the anionic form, is removed from equilibrium by the addition of a single electron from DHLA. The high reactivity of DHLA with this potentially deleterious ubisemiquinone species not only prevents the formation of prooxidants, it also keeps ubiquinone in its antioxidant active form. Experimental data of this study demonstrate a superadditive effect of ubiquinone in combination with DHLA in preventing peroxidation of biomembranes.  相似文献   

4.
The mitochondrial succinate dehydrogenase (SDH) is a tetrameric iron-sulfur flavoprotein of the Krebs cycle and of the respiratory chain. A number of mutations in human SDH genes are responsible for the development of paragangliomas, cancers of the head and neck region. The mev-1 mutation in the Caenorhabditis elegans gene encoding the homolog of the SDHC subunit results in premature aging and hypersensitivity to oxidative stress. It also increases the production of superoxide radicals by the enzyme. In this work, we used the yeast succinate dehydrogenase to investigate the molecular and catalytic effects of paraganglioma- and mev-1-like mutations. We mutated Pro-190 of the yeast Sdh2p subunit to Gln (P190Q) and recreated the C. elegans mev-1 mutation by converting Ser-94 in the Sdh3p subunit into a glutamate residue (S94E). The P190Q and S94E mutants have reduced succinate-ubiquinone oxidoreductase activities and are hypersensitive to oxygen and paraquat. Although the mutant enzymes have lower turnover numbers for ubiquinol reduction, larger fractions of the remaining activities are diverted toward superoxide production. The P190Q and S94E mutations are located near the proximal ubiquinone-binding site, suggesting that the superoxide radicals may originate from a ubisemiquinone intermediate formed at this site during the catalytic cycle. We suggest that certain mutations in SDH can make it a significant source of superoxide production in mitochondria, which may contribute directly to disease progression. Our data also challenge the dogma that superoxide production by SDH is a flavin-mediated event rather than a quinone-mediated one.  相似文献   

5.
Recent research indicates that cadmium (Cd) induces oxidative damage in cells; however, the mechanism of the oxidative stress induced by this metal is unclear. We investigated the effects of Cd on the individual complexes of the electron transfer chain (ETC) and on the stimulation of reactive oxygen species (ROS) production in mitochondria. The activity of complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c oxidoreductase) of mitochondrial ETC from liver, brain, and heart showed greater inhibition by Cd than the other complexes. Cd stimulated ROS production in the mitochondria of all three tissues mentioned above. The effect of various electron donors (NADH, succinate, and 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinol) on ROS production was tested separately in the presence and in the absence of Cd. ESR showed that complex III might be the only site of ROS production induced by Cd. The results of kinetic studies and electron turnover experiments suggest that Cd may bind between semiubiquinone and cytochrome b566 of the Q0 site of cytochrome b of complex III, resulting in accumulation of semiubiquinones at the Q0 site. The semiubiquinones, being unstable, are prone to transfer one electron to molecular oxygen to form superoxide, providing a possible mechanism for Cd-induced generation of ROS in mitochondria.  相似文献   

6.
We have examined the role of the quinone-binding (Q(P)) site of Escherichia coli succinate:ubiquinone oxidoreductase (succinate dehydrogenase) in heme reduction and reoxidation during enzyme turnover. The SdhCDAB electron transfer pathway leads from a cytosolically localized flavin adenine dinucleotide cofactor to a Q(P) site located within the membrane-intrinsic domain of the enzyme. The Q(P) site is sandwiched between the [3Fe-4S] cluster of the SdhB subunit and the heme b(556) that is coordinated by His residues from the SdhC and SdhD subunits. The intercenter distances between the cluster, heme, and Q(P) site are all within the theoretical 14 A limit proposed for kinetically competent intercenter electron transfer. Using EPR spectroscopy, we have demonstrated that the Q(P) site of SdhCDAB stabilized a ubisemiquinone radical intermediate during enzyme turnover. Potentiometric titrations indicate that this species has an E(m,8) of approximately 60 mV and a stability constant (K(STAB)) of approximately 1.0. Mutants of the following conserved Q(P) site residues, SdhC-S27, SdhC-R31, and SdhD-D82, have severe consequences on enzyme function. Mutation of the conserved SdhD-Y83 suggested to hydrogen bond to the ubiquinone cofactor had a less severe but still significant effect on function. In addition to loss of overall catalysis, these mutants also affect the rate of succinate-dependent heme reduction, indicating that the Q(P) site is an essential stepping stone on the electron transfer pathway from the [3Fe-4S] cluster to the heme. Furthermore, the mutations result in the elimination of EPR-visible ubisemiquinone during potentiometric titrations. Overall, these results demonstrate the importance of a functional, semiquinone-stabilizing Q(P) site for the observation of rapid succinate-dependent heme reduction.  相似文献   

7.
Antioxidant and prooxidant properties of mitochondrial Coenzyme Q   总被引:7,自引:0,他引:7  
Coenzyme Q is both an essential electron carrier and an important antioxidant in the mitochondrial inner membrane. The reduced form, ubiquinol, decreases lipid peroxidation directly by acting as a chain breaking antioxidant and indirectly by recycling Vitamin E. The ubiquinone formed in preventing oxidative damage is reduced back to ubiquinol by the respiratory chain. As well as preventing lipid peroxidation, Coenzyme Q reacts with other reactive oxygen species, contributing to its effectiveness as an antioxidant. There is growing interest in using Coenzyme Q and related compounds therapeutically because mitochondrial oxidative damage contributes to degenerative diseases. Paradoxically, Coenzyme Q is also involved in superoxide production by the respiratory chain. To help understand how Coenzyme Q contributes to both mitochondrial oxidative damage and antioxidant defences, we have reviewed its antioxidant and prooxidant properties.  相似文献   

8.
Complex III in the mitochondrial electron transport chain is a proposed site for the enhanced production of reactive oxygen species that contribute to aging in the heart. We describe a defect in the ubiquinol binding site (Q(O)) within cytochrome b in complex III only in the interfibrillar population of cardiac mitochondria during aging. The defect is manifested as a leak of electrons through myxothiazol blockade to reduce cytochrome b and is observed whether cytochrome b in complex III is reduced from the forward or the reverse direction. The aging defect increases the production of reactive oxygen species from the Q(O) site of complex III in interfibrillar mitochondria. A greater leak of electrons from complex III during the oxidation of ubiquinol is a likely mechanism for the enhanced oxidant production from mitochondria that contributes to aging in the rat heart.  相似文献   

9.
《BBA》2013,1827(10):1156-1164
The impact of complex II (succinate:ubiquinone oxidoreductase) on the mitochondrial production of reactive oxygen species (ROS) has been underestimated for a long time. However, recent studies with intact mitochondria revealed that complex II can be a significant source of ROS. Using submitochondrial particles from bovine heart mitochondria as a system that allows the precise setting of substrate concentrations we could show that mammalian complex II produces ROS at subsaturating succinate concentrations in the presence of Q-site inhibitors like atpenin A5 or when a further downstream block of the respiratory chain occurred. Upon inhibition of the ubiquinone reductase activity, complex II produced about 75% hydrogen peroxide and 25% superoxide. ROS generation was attenuated by all dicarboxylates that are known to bind competitively to the substrate binding site of complex II, suggesting that the oxygen radicals are mainly generated by the unoccupied flavin site. Importantly, the ROS production induced by the Q-site inhibitor atpenin A5 was largely unaffected by the redox state of the Q pool and the activity of other respiratory chain complexes. Hence, complex II has to be considered as an independent source of mitochondrial ROS in physiology and pathophysiology.  相似文献   

10.
Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines.  相似文献   

11.
Light-induced formation of ubiquinol-10 in Rhodobacter sphaeroides reaction centers was followed by rapid-scan Fourier transform IR difference spectroscopy, a technique that allows the course of the reaction to be monitored, providing simultaneously information on the redox states of cofactors and on protein response. The spectrum recorded between 4 and 29 ms after the second flash showed bands at 1,470 and 1,707 cm(-1), possibly due to a QH(-) intermediate state. Spectra recorded at longer delay times showed a different shape, with bands at 1,388 (+) and 1,433 (+) cm(-1) characteristic of ubiquinol. These spectra reflect the location of the ubiquinol molecule outside the Q(B) binding site. This was confirmed by Fourier transform IR difference spectra recorded during and after continuous illumination in the presence of an excess of exogenous ubiquinone molecules, which revealed the process of ubiquinol formation, of ubiquinone/ubiquinol exchange at the Q(B) site and between detergent micelles, and of Q(B)(-) and QH(2) reoxidation by external redox mediators. Kinetics analysis of the IR bands allowed us to estimate the ubiquinone/ubiquinol exchange rate between detergent micelles to approximately 1 s. The reoxidation rate of Q(B)(-) by external donors was found to be much lower than that of QH(2), most probably reflecting a stabilizing/protecting effect of the protein for the semiquinone form. A transient band at 1,707 cm(-1) observed in the first scan (4-29 ms) after both the first and the second flash possibly reflects transient protonation of the side chain of a carboxylic amino acid involved in proton transfer from the cytoplasm towards the Q(B) site.  相似文献   

12.
The function of ubiquinone in Escherichia coli   总被引:45,自引:17,他引:28  
1. The function of ubiquinone in Escherichia coli was studied by using whole cells and membrane preparations of normal E. coli and of a mutant lacking ubiquinone. 2. The mutant lacking ubiquinone, strain AN59 (Ubi(-)), when grown under aerobic conditions, gave an anaerobic type of growth yield and produced large quantities of lactic acid, indicating that ubiquinone plays a vital role in electron transport. 3. NADH and lactate oxidase activities in membranes from strain AN59 (Ubi(-)) were greatly impaired and activity was restored by the addition of ubiquinone (Q-1). 4. Comparison of the percentage reduction of flavin, cytochrome b(1) and cytochrome a(2) in the aerobic steady state in membranes from the normal strain (AN62) and strain AN59 (Ubi(-)) and the effect of respiratory inhibitors on these percentages in membranes from strain AN62 suggest that ubiquinone functions at more than one site in the electron-transport chain. 5. Membranes from strain AN62, in the absence of substrate, showed an electron-spin-resonance signal attributed to ubisemiquinone. The amount of reduced ubiquinone (50%) found after rapid solvent extraction is consistent with the existence of ubiquinone in membranes as a stabilized ubisemiquinone. 6. The effects of piericidin A on membranes from strain AN62 suggest that this inhibitor acts at the ubiquinone sites: thus inhibition of electron transport is reversed by ubiquinone (Q-1); the aerobic steady-state oxidation-reduction levels of flavins and cytochrome b(1) in the presence of the inhibitor are raised to values approximating those found in the membranes of strain AN59 (Ubi(-)); the inhibitor rapidly eliminates the electron-spin-resonance signal attributed to ubisemiquinone and allows slow oxidation of endogenous ubiquinol in the absence of substrate and prevents reduction of ubiquinone in the presence of substrate. It is concluded that piericidin A separates ubiquinone from the remainder of the electron-transport chain. 7. A scheme is proposed in which ubisemiquinone, complexed to an electron carrier, functions in at least two positions in the electron-transport sequence.  相似文献   

13.
《FEBS letters》1986,202(2):327-330
The sodium-transport respiratory chain NADH:quinone reductase of a marine bacterium, Vibrio alginolyti-cus, is composed of three protein subunits, α,β and γ. The β-subunit contains FAD as a prosthetic group and corresponds to NADH dehydrogenase, which catalyses the reduction of ubiquinone to ubisemiquinone. In addition to β, subunits α. and γ are essential for the quinone reductase, which catalyses the reduction of ubiquinone to ubiquinol. The α-subunit contains FMN and the reaction catalysed by subunit α is related to the coupling site of the sodium pump in the quinone reductase.  相似文献   

14.
The mechanism of farnesol (FOH)-induced growth inhibition of Saccharomyces cerevisiae was studied in terms of its promotive effect on generation of reactive oxygen species (ROS). The level of ROS generation in FOH-treated cells increased five- to eightfold upon the initial 30-min incubation, while cells treated with other isoprenoid compounds, like geraniol, geranylgeraniol, and squalene, showed no ROS-generating response. The dependence of FOH-induced growth inhibition on such an oxidative stress was confirmed by the protection against such growth inhibition in the presence of an antioxidant such as α-tocopherol, probucol, or N-acetylcysteine. FOH could accelerate ROS generation only in cells of the wild-type grande strain, not in those of the respiration-deficient petite mutant ([rho0]), which illustrates the role of the mitochondrial electron transport chain as its origin. Among the respiratory chain inhibitors, ROS generation could be effectively eliminated with myxothiazol, which inhibits oxidation of ubiquinol to the ubisemiquinone radical by the Rieske iron-sulfur center of complex III, but not with antimycin A, an inhibitor of electron transport that is functional in further oxidation of the ubisemiquinone radical to ubiquinone in the Q cycle of complex III. Cellular oxygen consumption was inhibited immediately upon extracellular addition of FOH, whereas FOH and its possible metabolites failed to directly inhibit any oxidase activities detected with the isolated mitochondrial preparation. A protein kinase C (PKC)-dependent mechanism was suggested to exist in the inhibition of mitochondrial electron transport since FOH-induced ROS generation could be effectively eliminated with a membrane-permeable diacylglycerol analog which can activate PKC. The present study supports the idea that FOH inhibits the ability of the electron transport chain to accelerate ROS production via interference with a phosphatidylinositol type of signal.  相似文献   

15.
The interaction of the exogenous quinones, duroquinone (DQ) and the decyl analogue of ubiquinone (DB) with the mitochondrial respiratory chain was studied in both wild-type and a ubiquinone-deficient mutant of yeast. DQ can be reduced directly by NADH dehydrogenase, but cannot be reduced by succinate dehydrogenase in the absence of endogenous ubiquinone. The succinate-driven reduction of DQ can be stimulated by DB in a reaction inhibited 50% by antimycin and 70-80% by the combined use of antimycin and myxothiazol, suggesting that electron transfer occurs via the cytochrome b-c1 complex. Both DQ and DB can effectively mediate the reduction of cytochrome b by the primary dehydrogenases through center o, but their ability to mediate the reduction of cytochrome b through center i is negligible. Two reaction sites for ubiquinol seem to be present at center o: one is independent of endogenous Q6 with a high reaction rate and a high Km; the other is affected by endogenous Q6 and has a low reaction rate and a low Km. By contrast, only one ubiquinol reaction site was observed at center i, where DB appears to compete with endogenous Q6. DB can oxidize most of the pre-reduced cytochrome b, while DQ can oxidize only 50%. On the basis of these data, the possible binding patterns of DB on different Q-reaction sites and the requirement for ubiquinone in the continuous oxidation of DQH are discussed.  相似文献   

16.
The transfer of electrons and protons between membrane-bound respiratory complexes is facilitated by lipid-soluble redox-active quinone molecules (Q). This work presents a structural analysis of the quinone-binding site (Q-site) identified in succinate:ubiquinone oxidoreductase (SQR) from Escherichia coli. SQR, often referred to as Complex II or succinate dehydrogenase, is a functional member of the Krebs cycle and the aerobic respiratory chain and couples the oxidation of succinate to fumarate with the reduction of quinone to quinol (QH(2)). The interaction between ubiquinone and the Q-site of the protein appears to be mediated solely by hydrogen bonding between the O1 carbonyl group of the quinone and the side chain of a conserved tyrosine residue. In this work, SQR was co-crystallized with the ubiquinone binding-site inhibitor Atpenin A5 (AA5) to confirm the binding position of the inhibitor and reveal additional structural details of the Q-site. The electron density for AA5 was located within the same hydrophobic pocket as ubiquinone at, however, a different position within the pocket. AA5 was bound deeper into the site prompting further assessment using protein-ligand docking experiments in silico. The initial interpretation of the Q-site was re-evaluated in the light of the new SQR-AA5 structure and protein-ligand docking data. Two binding positions, the Q(1)-site and Q(2)-site, are proposed for the E. coli SQR quinone-binding site to explain these data. At the Q(2)-site, the side chains of a serine and histidine residue are suitably positioned to provide hydrogen bonding partners to the O4 carbonyl and methoxy groups of ubiquinone, respectively. This allows us to propose a mechanism for the reduction of ubiquinone during the catalytic turnover of the enzyme.  相似文献   

17.
The ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complex from Paracoccus denitrificans exhibits a thermodynamically stable ubisemiquinone radical detectable by EPR spectroscopy. The radical is centered at g = 2.004, is sensitive to antimycin, and has a midpoint potential at pH 8.5 of +42 mV. These properties are very similar to those of the stable ubisemiquinone (Qi) previously characterized in the cytochrome bc1 complexes of mitochondria. The micro-environment of the Rieske iron-sulfur cluster in the Paracoccus cytochrome bc1 complex changes in parallel with the redox state of the ubiquinone pool. This change is manifested as shifts in the gx, gy, and gz values of the iron-sulfur cluster EPR signal from 1.80, 1.89, and 2.02 to 1.76, 1.90, and 2.03, respectively, as ubiquinone is reduced to ubiquinol. The spectral shift is accompanied by a broadening of the signal and follows a two electron reduction curve, with a midpoint potential at pH 8.5 of +30 mV. A hydroxy analogue of ubiquinone, UHDBT, which inhibits respiration in the cytochrome bc1 complex, shifts the gx, gy, and gz values of the iron-sulfur cluster EPR signal to 1.78, 1.89, and 2.03, respectively, and raises the midpoint potential of the iron-sulfur cluster at pH 7.5 from +265 to +320 mV. These changes in the micro-environment of the Paracoccus Rieske iron-sulfur cluster are like those elicited in mitochondria. These results indicate that the cytochrome bc1 complex of P. denitrificans has a binding site for ubisemiquinone and that this site confers properties on the bound ubisemiquinone similar to those in mitochondria. In addition, the line shape of the Rieske iron-sulfur cluster changes in response to the oxidation-reduction status of ubiquinone, and the midpoint of the iron-sulfur cluster increases in the presence of a hydroxyquinone analogue of ubiquinone. The latter results are also similar to those observed in the mitochondrial cytochrome bc1 complex. However, unlike the mitochondrial complexes, which contain eight to 11 polypeptides and are thought to contain distinct quinone binding proteins, the Paracoccus cytochrome bc1 complex contains only three polypeptide subunits, cytochromes b, c1, and iron-sulfur protein. The ubisemiquinone binding site and the site at which ubiquinone and/or ubiquinol bind to affect the Rieske iron-sulfur cluster in Paracoccus thus exist in the absence of any distinct quinone binding proteins and must be composed of domains contributed by the cytochromes and/or iron-sulfur protein.  相似文献   

18.
QP-S, a ubiquinone (Q) protein, accepts electrons from succinate through succinate dehydrogenase (SDH). A new method has produced a preparation of QP-S which has a different amino acid composition and SDS gel electrophoretic pattern from that of the old preparation (Biochemistry 19, 3579-3585 (1980)). The new preparation contains less than 1 nmol heme/mg protein; the activity of the preparation was not proportional to its heme content. A thenoyltrifluoroacetone sensitive free radical signal was detected by EPR spectroscopy in succinate-Q reductase reconstituted from this QP-S and SDH; the characteristics of this species identify it as ubisemiquinone. At pH 7.4, the Em of the two electron step was about 70 mV with E1 = 5 mV and E2 = 125 mV. The properties of the radical differed slightly from those of "Qs" radical in more intact preparations (e.g. submitochondrial particles). The present is the simplest system in which such a succinate reducible ubisemiquinone free radical has been demonstrated.  相似文献   

19.
Recent progress in understanding the Q-cycle mechanism of the bc(1) complex is reviewed. The data strongly support a mechanism in which the Q(o)-site operates through a reaction in which the first electron transfer from ubiquinol to the oxidized iron-sulfur protein is the rate-determining step for the overall process. The reaction involves a proton-coupled electron transfer down a hydrogen bond between the ubiquinol and a histidine ligand of the [2Fe-2S] cluster, in which the unfavorable protonic configuration contributes a substantial part of the activation barrier. The reaction is endergonic, and the products are an unstable ubisemiquinone at the Q(o)-site, and the reduced iron-sulfur protein, the extrinsic mobile domain of which is now free to dissociate and move away from the site to deliver an electron to cyt c(1) and liberate the H(+). When oxidation of the semiquinone is prevented, it participates in bypass reactions, including superoxide generation if O(2) is available. When the b-heme chain is available as an acceptor, the semiquinone is oxidized in a process in which the proton is passed to the glutamate of the conserved -PEWY- sequence, and the semiquinone anion passes its electron to heme b(L) to form the product ubiquinone. The rate is rapid compared to the limiting reaction, and would require movement of the semiquinone closer to heme b(L) to enhance the rate constant. The acceptor reactions at the Q(i)-site are still controversial, but likely involve a "two-electron gate" in which a stable semiquinone stores an electron. Possible mechanisms to explain the cyt b(150) phenomenon are discussed, and the information from pulsed-EPR studies about the structure of the intermediate state is reviewed. The mechanism discussed is applicable to a monomeric bc(1) complex. We discuss evidence in the literature that has been interpreted as shown that the dimeric structure participates in a more complicated mechanism involving electron transfer across the dimer interface. We show from myxothiazol titrations and mutational analysis of Tyr-199, which is at the interface between monomers, that no such inter-monomer electron transfer is detected at the level of the b(L) hemes. We show from analysis of strains with mutations at Asn-221 that there are coulombic interactions between the b-hemes in a monomer. The data can also be interpreted as showing similar coulombic interaction across the dimer interface, and we discuss mechanistic implications.  相似文献   

20.
It was shown that the membrane-bound complex I is fully inactive in the absence of NADH during the reverse electron transfer from succinate to NAD+. The enzyme activation is attained by preincubation of submitochondrial particles with low concentrations of NADH; the activating effect persists after a complete oxidation of the latter during long-term (several hours) aerobic incubation. The experimental results suggest that complex I contains a redox component, whose reduction by NADH and aerobic oxidation are not involved in the overall catalytic reaction. An experimental scheme is proposed, according to which the key role of such a component is ascribed to the tightly bound ubiquinone; the activation and inactivation of the enzyme are due to a slow reversible redox conversion (ubiquinone in equilibrium ubisemiquinone), whereas the catalytic act involves a rapid reversible conversion (ubisemiquinone in equilibrium ubiquinol). It was demonstrated that the "redox" mechanism of the inactivation-activation reaction determines the strong dependence of activity of the reverse electron transfer on the mode of preparation of submitochondrial particles. The coupling properties of the submitochondrial particulate membrane and the activities of enzymes involved in the reverse electron transfer are stable at room temperature for over 14 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号