首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
A photoreactive, radioiodinated derivative of platelet activating factor (PAF), 1-O-(4-azido-2-hydroxy-3-iodobenzamido)undecyl-2-O-acetyl-sn- glycero-3-phosphocholine ([125I]AAGP), was synthesized and used as a photoaffinity probe to study the PAF binding sites in rabbit platelet membranes. The nonradioactive analog, IAAGP, induced rabbit platelet aggregation with an EC50 value of 3.2 +/- 1.9 nM as compared to 0.40 +/- 0.25 nM for PAF. Specific binding of [125I]AAGP to rabbit platelet membranes was saturable with a dissociation constant (Kd) of 2.4 +/- 0.7 nM and a receptor density (Bmax) of 1.1 +/- 0.2 pmol/mg protein. Photoaffinity labeling of platelet membranes with [125I]AAGP revealed several 125I-labeled components by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A protein species with apparent molecular weight of 52,000 was consistently observed and inhibited significantly by unlabeled PAF at nanomolar concentrations. The labeling was specific since the PAF antagonists, SRI-63,675 and L-652,731, at 1 uM also blocked the appearance of this band; whereas lysoPAF was not effective at the same concentration. These results suggest that the binding sites of PAF receptor in rabbit platelets reside in the polypeptide of Mr = 52,000.  相似文献   

2.
The binding of 3H-labeled 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (PAF) to isolated rat liver plasma membranes and its inhibition by PAF agonists and receptor antagonists was demonstrated. The specific binding was readily saturable with a high affinity. The equilibrium dissociation constant (KD) value was 0.51 (+/- 0.14) nM and the maximal number of binding sites (Bmax) was estimated to be 141 (+/- 18) fmol/mg protein. The binding site was PAF specific-biologically inactive enantiomer was practically inactive. Two PAF-like receptor antagonists, Ono-6240 and CV-3988, and two PAF-unlike receptor antagonists, L-652,731 and kadsurenone, also displaced the binding of [3H]PAF to rat liver plasma membranes but their relative potencies in this system differed from those found in other receptor systems. Mg2+ potentiated [3H]PAF binding but inhibited it at concentrations higher than 10 mM. Both Na+ and K+ inhibited the Mg2+-potentiated binding, an ionic effect which was different from that found in rabbit platelets. These results suggest that rat livers contain PAF-specific receptors, and the receptors in rat livers are different from those found in other receptor systems.  相似文献   

3.
Specific binding of 125I-nerve growth factor (NGF), defined as that part of the total binding of the iodinated derivative displaced by 15–30 μg/ml native NGF, is found at significant levels in many peripheral tissues of chick embryos and rats. Destruction of the sympathetic innervation of tissues by treatment of newborn rats with guanethidine does not materially alter the 125I-NGF specific binding capacity of tissues, indicating that these binding sites for NGF are part of the tissues themselves and not a property of the sympathetic nerve terminals which innervate them. Specific binding of 125I-NGF which is also resistant to guanethidine treatment exists in chick embryonic and rat brain. The time course of the development of this specific binding in chick embryonic heart and brain suggests a developmental role for these peripheral and central nervous system NGF binding sites.  相似文献   

4.
Autoradiographs of tissue slices from livers perfused with 1 x 10(-9) M-1-O-[3H]octadecyl-2-acetyl-sn-glycero-3-phosphocholine ([ 3H]18:0-sn-3-AGEPC) indicate that binding of this agonist is localized in the portal venules in anterograde perfused livers, and in the central venules in retrograde perfused livers. The pattern of silver grains in anterograde perfused liver was not affected significantly by prior exposure to 100-fold excesses of unlabelled 16:0- or 18:0-sn-3-AGEPC, 16:0-sn-1-AGEPC, or a 1000-fold excess of U.66985. [3H]18:0-sn-3-lyso-GEPC produced the same pattern of binding as the acetylated analogue. Measurement of glucose release stimulated by 16:0-sn-3-AGEPC demonstrated that the retrograde perfused liver was nearly 1000-fold less sensitive to this compound than the anterograde perfused liver. Exposure of the livers to bovine serum albumin prior to 5 x 10(-11) M-[3H]18:0-sn-3-AGEPC resulted in inhibition of stimulated glucose release, and decreased both the amount of label retained in the livers and the amount of silver grains over the portal sinusoidal cells without affecting the amount of grains seen over all other regions of the liver. Glucose release from primary monolayer cultures of hepatocytes or suspensions of liver slices was not stimulated by 16:0-sn-3-AGEPC. The results suggest that specific binding of [3H]18:0-sn-3-AGEPC is restricted to the portal side of the liver microvasculature, the majority of binding is nonspecific, and the biological response to AGEPC requires an intact and perfused vasculature.  相似文献   

5.
6.
The interaction of 125I-labeled recombinant human neutrophil activating factor (NAF) with polymorphonuclear leukocytes (PMN) was studied by means of a radioreceptor assay. The binding was characterized by a rapid transition (t1/2 less than or equal to 1 min) from a pH 3-sensitive state at 4 degrees C to pH 3 resistance at 37 degrees C. This was not caused by internalization of NAF since pH 3-resistant bound iodinated NAF could still be exchanged by an excess of nonlabeled NAF, i.e. was dissociable. Internalized iodinated NAF was processed into trichloroacetic acid-soluble forms. Scatchard transformation of binding isotherms at 4 and 37 degrees C led to nonlinear curves, a finding which is consistent with the expression of two receptor populations, one with high (KD = 11-35 pM) and the other with lower affinity (KD = 640-830 pM) at 4 degrees C. Numbers of the low affinity binding sites were approximately 34,000, and those with high affinity were 5,200/PMN when estimated at 4 degrees C. Binding of iodinated NAF to PMN was specific since it could be competed by an excess of nonlabeled NAF but not by two other activators of PMN function, formylmethionyl-leucyl-phenylalanine or human recombinant granulocyte-macrophage colony-stimulating factor. In addition to human PMN, NAF also bound specifically to two human monocytic cell lines; however, only the low affinity binding site could be detected on these cells.  相似文献   

7.
Desensitization of human platelets by platelet activating factor   总被引:3,自引:0,他引:3  
Human platelets are less responsive to PAF at 37 degrees than at 25 degrees. They can be desensitized to the effects of PAF by pre-exposure to small concentrations. In both cases desensitization appears to be accompanied by a decreased affinity of the high affinity site for PAF rather than loss of binding sites. Alteration of a metabolic step subsequent to binding cannot be excluded, but platelets show normal response to a variety of other agents under the conditions resulting in desensitization of platelets to PAF.  相似文献   

8.
S B Hwang  C S Lee  M J Cheah  T Y Shen 《Biochemistry》1983,22(20):4756-4763
By using tritiated 1-O-alkyl-2-O-acetyl-sn-glycero-3-phosphocholine (3H-PAF), we have directly identified its specific binding sites on rabbit platelet plasma membranes. The equilibrium dissociation constant for 3H-PAF is 1.36 (+/- 0.05) X 10(-9) M at 0 degrees C. The number of binding sites is 1.61 (+/- 0.34) X 10(12)/mg of membrane, which corresponds to approximately 150-300 receptors/platelet (depending on membrane vesicle orientation). Binding of 3H-PAF to rabbit platelet plasma membrane is rapid (t1/2 less than 5 min at 0 degrees C) and reversible. For a series of PAF analogues, their affinity for the receptor sites parallels with their relative potency to induce platelet aggregation. PAF can cause contraction of smooth muscle of heart, parenchymal strip, trachea, and ileum. Specific PAF receptor binding was demonstrated with purified plasma membrane from several smooth muscles and from polymorphonuclear leukocytes but not from presumably PAF nonresponsive cells such as erythrocytes and alveolar macrophages. It is likely that the interaction of PAF with these binding sites initiates the specific responses of platelets, polymorphonuclear leukocytes, and smooth muscles.  相似文献   

9.
PAF causes dose dependent platelet aggregation of human platelet rich plasma or gel filtered platelets (GFP). The benzodiazepines alprazolam and triazolam, but not diazepam (1-10 microM), inhibit PAF induced aggregation but have no effect on aggregation induced by other platelet agonists such as ADP, epinephrine and collagen. The IC50 for aggregation by PAF (4 nM) in GFP is 1 microM for both alprazolam and triazolam. The mechanism for this inhibition was explored by studying the binding of 3H-PAF(0.08 nM) to GFP in Tyrodes buffer containing albumin (0.35%), Mg++ (1mM) and Ca++ (0.5mM). GFP was incubated with different doses of the drug for 5 min prior to addition of 3H-PAF. Incubation was then carried out for 60 min at 25 degrees C to achieve binding equilibrium, as previously established. Alprazolam and triazolam, but not diazepam, caused competitive displacement of 3H-PAF from specific binding sites of GFP. The IC50 of alprazolam was 3.8 microM while that of triazolam was 0.82 microM. Lineweaver-Burk plots of 3H-PAF binding in the presence of inhibitor were also consistent with competitive inhibition. These results are consistent with the interpretation that the specific inhibition of PAF induced platelet aggregation by alprazolam and triazolam, respectively, is due to competitive inhibition of binding of PAF to its receptor.  相似文献   

10.
The binding of rat serum phosphorylcholine binding protein (PCBP) to platelet activating factor (PAF) has been demonstrated using a HPLC-gel filtration technique. The bulk of the bound [3H]-PAF eluted with a higher molecular weight species of PCBP, possibly an aggregated form of PCBP. A smaller amount of [3H]-PAF co-eluted with the major monomeric species of PCBP. Formation of the PCBP-PAF complex was calcium dependent and could be inhibited by phosphorylcholine, suggesting the involvement of the phosphorylcholine binding site on PCBP. Binding of albumin and alpha 1-acid glycoprotein to PAF was not affected by phosphorylcholine or calcium. The specificity of this binding may explain the inhibitory effect of PCBP and related phosphorylcholine binding proteins on PAF induced aggregation of platelets.  相似文献   

11.
Previously reported methods for quantifying platelet-activating factor (PAF) binding to rabbit platelet membranes were modified for studies of PAF binding to human platelet membranes. The membranes were prepared by the "glycerol lysis" method and PAF binding was quantified by using polyethylene glycol precipitation to recover membrane-bound PAF. Optimal PAF binding required buffers containing 3 to 10 mm KCl and either 5 to 10 mM MgCl2 or 5 to 10 mM CaCl2. NaCl was not as effective as KCl and concentrations of NaCl greater than 3 mM strongly inhibited PAF binding. Maximal binding occurred after incubation for 60 min at 0 degree C and was reversed by the addition of excess unlabeled PAF. PAF binding was saturable. Scatchard analysis of PAF binding to 50 micrograms of membrane protein revealed 10.3 +/- 1.7 x 10(11) receptors per milligram of membrane protein and the receptors had a Kd of 7.6 +/- 1.9 nM. The calculated receptor number, binding affinity, and specificity of binding are similar to those previously calculated for PAF binding to intact human platelets, suggesting that the membrane binding site for PAF is the PAF receptor.  相似文献   

12.
13.
3H-PGD2 was biosynthesized from 3H-arachidonate and used to study the binding of PGD2 to intact human platelets. The binding of 3H-PGD2 to platelets was rapid, being essentially complete within two min. Bound 3H-PGD2 PGD2. Scatchard analysis of concentration-dependent binding indicated a single class of binding sites with a dissociation constant (KD) of 4.12 × 10?7M and a capacity of 760 sites per platelet. The relative ability of PGD2, PGE2, PGE1 and PGI2 to displace 3H-PGD2 bound to these sites was 100:2:2<1. We conclude therefore, that these PGD2 binding sites are specific for PGD2 and independent of those previously demonstrated to recognize 3H-PGI2 and 3H-PGE1.  相似文献   

14.
Platelet activating factor (PAF) synthesized by human neutrophils challenged by opsonized zymosan or calcium ionophore was isolated from cells and buffer using Bligh and Dyer extraction following the addition of tracer amounts of tritiated-PAF. The extract was subjected to TLC separation of phospholipid classes, followed by reverse phase HPLC for molecular species separation. All fractions were measured for radioactivity, biological activity and fast atom bombardment mass spectrometry. While the radioactive tracer PAF could be separated into three molecular species, PAF biological activity eluted as a single component which was characterized as 1-O-hexadecyl-2-acetyl-glycero-3-phosphocholine. The lack of molecular species heterogeneity of PAF produced in response to stimuli implies a higher degree of control of biosynthesis than previously suspected.  相似文献   

15.
16.
The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (lambda(max) = 570 nm) to the blue form (lambda(max) = 605 nm) of bR. This transition can also be induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by evaluating the interaction between Mn(2+) and a nitroxyl radical probe covalently bound to several mutants in which protein residues were substituted by cystein. We have found that Mn(2+), which binds to the highest-affinity binding site, significantly affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be approximately 9.8 +/- 0.7 A. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn(2+) bound to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein. The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve negatively charged lipids located on the exterior of the bR trimer structure.  相似文献   

17.
18.
Human polymorphonuclear leukocytes (PMN) incubated with 1-O-[3H]alkyl-2-acetyl-sn-glycero-3-phosphocholine (1-[3H]alkyl-2-acetyl-GPC; platelet activating factor) inactivated the compound by removing the acetyl group and replacing it with a long chain acyl residue. The nature of the acyl group added at the 2-position of the 1-O-[3H]alkyl-2-acyl-GPC formed was examined by argentation chromatography and by reverse phase high performance liquid chromatography. A striking selectivity for arachidonate was observed in the acylation reaction. The major labeled component of the starting material was the 1-O-hexadecyl-linked species; high performance liquid chromatography analysis revealed that 75 to 80% of this component was acylated by arachidonate. Similarly, based on argentation thin layer chromatography, approximately 80% of the total starting material was acylated by tetraenoic acyl residues. The incorporation of 1-O-[3H]alkyl-2-lyso-GPC into 1-O-alkyl-2-acyl-GPC by the PMN was compared; no difference in the acylation pattern was observed with the 2-acetyl and 2-lyso precursors. Thus, activation of the PMN does not appear to be required to elicit the selectivity for arachidonate. When labeled 1-palmitoyl-2-lyso-GPC was compared in the system under the same conditions, it was also preferentially acylated by arachidonate; thus, it is not clear at this time whether or not the selectivity for arachidonate is physiologically limited to platelet activating factor. Our findings suggest a close relationship exists between the metabolism of platelet activating factor and arachidonate in human PMN.  相似文献   

19.
The cardiodepressive effect of PAF has been studied on the electrical and mechanical activities of isolated auricles of guinea pig. Intracellular resting potential, action potential (AP) and isometric contractions elicited by electrical stimulation (0.5 Hz) were measured. PAF (10(-7) M) induced negative inotropic effect, which reached its peak after 5 min with 23.5 +/- 6.6% in respect to prechallenge values (n = 8). After 20 min negative inotropic effect relaxed to 39.6 +/- 8.8%. 1 min after the beginning of washing in Tyrode solution, positive inotropic effect of PAF was evident, that reached its peak (217 +/- 49.5%) after 2 min, decayed after 5-10 min to normal values. PAF did not modify the resting membrane potential, produced a decrease in the amplitude and Vmax of the upstroke AP, shortened the AP duration. Ca-AP and contractions, elicited in partially depolarized myocardium were decreased by PAF (10(-7) M). PAF-produce the change of the AP and the negative effect on auricle contractile force was inhibited in muscles pretreated with 3mM 4 aminopyridine. Histamine (10(-4) M) was also capable of neutralizing the depressant effect of PAF. The obtained results suggested that PAF effects on the membrane of cardiac cells could be related to a change in Ca and K conductance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号