首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The possibility of the stable inheritance of the plasmid p85 mobilized derivatives from Azospirillum brasilense Sp245 in the cells of the bacterial genera Rizobiaceae (Agrobacterium tumfaciens) and Pseudomonadaceae (Pseudomonas putida) has been shown. The plasmid p85 participates in coding for the physiologically active products (the plant hormones). It is not inherited by the Escherichia coli strains. For the first time the incompatibility of azospirillium plasmids has been demonstrated on the example of the plasmid p85 from Azospirillum brasilense Sp245 and the plasmid p115 from Azospirillum brasilense Sp7.  相似文献   

2.
Two Azospirillum brasilense loci that correct Rhizobium meliloti exoB and exoC mutants for exopolysaccharide (EPS) synthesis have been identified previously (K. W. Michiels, J. Vanderleyden, A. P. Van Gool, E. R. Signer, J. Bacteriol., 1988b). A. brasilense exo mutants produce EPS of lower molecular weight than the wild type strain. Here, we show by hybridization that these exo loci are located on a 90-MDa plasmid in A. brasilense Sp7. In four other Azospirillum strains but not in A. lipoferum SpBr17, the loci are likewise located on a plasmid of approximately the same size. Transposon Tn5 insertions in these loci were isolated and mapped on the cloned DNA by restriction analysis. Hybridization of restriction digests of purified 90-MDa plasmid DNA with probes containing the exo loci confirmed their plasmid location. This is the first report on plasmid localization of genes in Azospirillum.  相似文献   

3.
Inheritance of the plasmid vector pAS8-1213 in Azospirillum brasilense Sp245 cells has been studied. The plasmid pAS8-1213 is shown to be uncapable of autonomous replication in the new host but able to integrate into the genetic structures of Azospirillum with high frequency. 90-95% of KmR-transconjugants of A. brasilense harbor pAS8-1213 cointegrated with the smaller host plasmid pAbSP245c(85Md). The formed cointegrate can be transferred into Azospirillum spp. 75 and RecA- strains of E. coli (HB101 and DH1) and stably maintained in these cells. The IS21 element inherent of the plasmid pAS8-1213 is supposed to participate in pAS8-1213::pAbSP245c cointegrate formation.  相似文献   

4.
5.
Abstract Azospirillum brasilense is a rhizosphere microorganism which has potential use for promoting plant growth in economically important crops. Its ability to survive the adverse conditions imposed by nutrient starvation and competition in the rhizosphere is of great importance. A. brasilense accumulates up to 70% of its cell dry weight with poly-β-hydroxybutyrate (PHB). In the presence of stress factors such as ultraviolet radiation, desiccation and osmotic stress, PHB-rich cells survived better than PHB-poor cells. Polymer-rich cells of Azospirillum fixed N2 in the absence of exogenous carbon and combined nitrogen. The enzymes of the PHB cycle in both the synthesis and degradation processes as well as during starvation were more active in PHB-rich cells. After 24 h of starvation there was a peak of activity of d (−)β-hydroxybutyrate dehydrogenase, β-ketothiolase and thiophorase due to PHB degradation. Additionally, acetoacetyl-CoA reductase dropped to a minimum level because PHB could not be synthesized. The possible utilization of PHB as a sole carbon and energy source by A. brasilense and other bacteria during establishment, proliferation and survival in the rhizosphere will be discussed.  相似文献   

6.
The conjugative transfer of RP4 plasmid from Escherichia coli to Azospirillum brasilense was detected after introduction and subsequent incubation of these microorganisms in soil. The plasmid transfer via transformation from Escherichia coli to Bacillus subtilis was observed in case both bacteria were growing together in sand containing sucrose solution. The possible reason for low frequency interspecies plasmid transformation under conditions close to natural habitats is poor survival of "domesticated" rather than wild type Bacillus subtilis strains and lack of competence state in this case.  相似文献   

7.
Indole acetic acid (IAA) production in Azospirillum brasilense strain Sp245 is controlled by a 85 MDa plasmid naturally present in this bacterium. In the presence of L-tryptophan, anthranilic acid production and almost no IAA production occurs in a derivative strain harbouring a Tn5-Mob insertion in the 85 MDa plasmid. Agrobacterium tumefaciens strain GM19023, upon transfer of Tn5-Mob labelled 85 MDa plasmid of A. brasilense Sp245, gains the ability to produce anthranilic acid.  相似文献   

8.
Abstract The feasibility of electric field mediated transformation of the nitrogen fixing bacterium Azospirillum was studied. The broad host range plasmid pRK290 was used throughout this study. Transformants were obtained with all A. brasilense strains tested, although with strain dependent efficiency. No transformants were obtained with an A. lipoferum strain. Transfer of the pRK290 plasmid DNA in the A. brasilense strains was confirmed by DNA extraction of the transformants and gel electrophoresis. The effects of the physiological status of the cells and the electric field strength during electroporation were studied in detail for one particular A. brasilense strain.  相似文献   

9.
In semiliquid laboratory media, the bacterium Azospirillum brasilense migrates with the formation of swarming rings. It is demonstrated that adsorption of the sulfonated azodye Congo Red confers on A. brasilense the ability to consistently spread in a semiliquid agar and form microcolonies. Spontaneous variants of A. brasilense with rapid swarming are described, as well as variants that swarm in the presence of Congo Red. It is assumed that at least two types of compounds are formed, which are (a) necessary for swarming and/or spreading with the formation of microcolonies and (b) capable of interacting with Congo Red.  相似文献   

10.
The plant growth-promoting soil bacterium Azospirillum brasilense enhances growth of economically important crops, such as wheat, corn and rice. In order to improve plant growth, a close bacterial association with the plant roots is needed. Genes encoded on a 90-MDa plasmid, denoted pRhico plasmid, present in A. brasilense Sp7, play an important role in plant root interaction. Sequencing, annotation and in silico analysis of this 90-MDa plasmid revealed the presence of a large collection of genes encoding enzymes involved in surface polysaccharide biosynthesis. Analysis of the 90-MDa plasmid genome provided evidence for its essential role in the viability of the bacterial cell.  相似文献   

11.
Microbiology - Polyethylene glycol (PEG 6000) was used to establish osmotic stress conditions during growth of the type strain Azospirillum brasilense Sp7 and its spontaneous variants Sp7.4 and...  相似文献   

12.
Azospirillum species are plant growth-promotive bacteria whose beneficial effects have been postulated to be partially due to production of phytohormones, including gibberellins (GAs). In this work, Azospirillum brasilense strain Cd and Azospirillum lipoferum strain USA 5b promoted sheath elongation growth of two single gene GA-deficient dwarf rice (Oryza sativa) mutants, dy and dx, when the inoculated seedlings were supplied with [17,17-2H2]GA20-glucosyl ester or [17,17- 2H2]GA20-glucosyl ether. Results of capillary gas chromatography-mass spectrometry analysis show that this growth was due primarily to release of the aglycone [17,17-2H2]GA20 and its subsequent 3beta-hydroxylation to [17,17-2H2]GA1 by the microorganism for the dy mutant, and by both the rice plant and microorganism for the dx mutant.  相似文献   

13.
Abstract Inoculation of wheat seedlings with Azospirillum brasilense Sp6 produced an increase in the number and length of the lateral roots as a plant response. Inoculation with a Nif mutant, A. brasilense SpF103, which is producer of indole-3-acetic acid (IAA), yielded a very similar plant response. However, inoculation with a Nif mutant, A. brasilense SpF57, which is a low producer of IAA, did not elitic any response from the plant. The data suggest that the root system response of wheat seedlings to bacterial inoculation is due mainly to production of auxin-type substances by the microorganism.  相似文献   

14.
Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani.  相似文献   

15.
Bacteria of the genus Azospirillum increase the grain yield of several grass crops. In this work the effect of inoculating maize plants with genetically engineered Azospirillum brasilense for trehalose biosynthesis was determined. Transformed bacteria with a plasmid harboring a trehalose biosynthesis gene-fusion from Saccharomyces cerevisiae were able to grow up to 0.5 M NaCl and to accumulate trehalose, whereas wild-type A. brasilense did not tolerate osmotic stress or accumulate significant levels of the disaccharide. Moreover, 85% of maize plants inoculated with transformed A. brasilense survived drought stress, in contrast with only 55% of plants inoculated with the wild-type strain. A 73% increase in biomass of maize plants inoculated with transformed A. brasilense compared with inoculation with the wild-type strain was found. In addition, there was a significant increase of leaf and root length in maize plants inoculated with transformed A. brasilense . Therefore, inoculation of maize plants with A. brasilense containing higher levels of trehalose confers drought tolerance and a significant increase in leaf and root biomass. This work opens the possibility that A. brasilense modified with a chimeric trehalose biosynthetic gene from yeast could increase the biomass, grain yield and stress tolerance in other relevant crops.  相似文献   

16.
17.
Homology was previously detected between the DNA restriction fragments containing Rhizobium meliloti nodulation genes and the 90-MDa plasmid, p90, of Azospirillum brasilense Sp7. Two DNA loci from Sp7 genome that complement mutations in the exopolysaccharide synthesis genes, exoB and exoC, of R. meliloti were also shown to be present on the plasmid. A more detailed characterization of the plasmid was undertaken to establish its physical map and to localize the nod homologies and other specific regions. Six loci were mapped, the region homologous to the nodulation genes, nodPQ, of R. meliloti, the exoB and exoC mutation-correcting loci, a locus for Ap resistance, a bla homology region different from the Ap resistance locus, and a region necessary for the maintenance of p90 as an independent replicon. Mobilization into Agrobacterium tumefaciens of p90-Tn5-Mob was obtained at a frequency of 10(-4), with the plasmid helper pJB3JI. Self-transfer of p90 was not demonstrated. Fragments of p90 hybridized with a plasmid of 90 MDa present in most A. brasilense and some A. lipoferum strains, suggesting a plasmid family in Azospirillum.  相似文献   

18.
巴西固氮螺菌Yu62的EGFP标记及其在小麦体内的定殖研究   总被引:1,自引:0,他引:1  
以质粒pEGFP-C1为模板,采用PCR方法特异性扩增增强型绿色荧光蛋白(EGFP)基因全长序列,将其与原核表达载体pVK-100连接,构建成重组载体pVK-EGFP.利用电转化法将重组载体导入巴西固氮螺菌Yu62中,得到EGFP标记菌株.用EGFP标记菌接种小麦'小偃107'种子,室内限菌条件下培养10 d后,用荧光显微镜观测标记菌在小麦体内的定殖规律并观察接菌植株的田间生长状况.结果显示,巴西固氮螺菌Yu62能定殖于小麦根毛区、茎组织的细胞间隙等部位,而且接菌小麦'小偃107'植株在根系发育、株高、分蘖数等方面比对照有较明显的优势.研究表明,巴西固氮螺菌Yu62能够定殖于小麦根茎内,并具有促进植物生长的作用.  相似文献   

19.
The plant growth-promoting rhizobacterium Azospirillum lipoferum 4B generates in vitro at high frequency a stable nonswimming phase variant designated 4V(I), which is distinguishable from the wild type by the differential absorption of dyes. The frequency of variants generated by a recA mutant of A. lipoferum 4B was increased up to 10-fold. The pleiotropic modifications characteristic of the phase variant are well documented, but the molecular processes involved are unknown. Here, the objective was to assess whether genomic rearrangements take place during phase variation of strain 4B. The random amplified polymorphic DNA (RAPD) profiles of strains 4B and 4V(I) differed. RAPD fragments observed only with the wild type were cloned, and three cosmids carrying the corresponding fragments were isolated. The three cosmids hybridized with a 750-kb plasmid and pulse-field gel electrophoresis analysis revealed that this replicon was missing in the 4V(I) genome. The same rearrangements took place during phase variation of 4BrecA. Large-scale genomic rearrangements during phase variation were demonstrated for two additional strains. In Azospirillum brasilense WN1, generation of stable variants was correlated with the disappearance of a replicon of 260 kb. For Azospirillum irakense KBC1, the variant was not stable and coincided with the formation of a new replicon, whereas the revertant recovered the parental genomic architecture. This study shows large-scale genomic rearrangements in Azospirillum strains and correlates them with phase variation.  相似文献   

20.
Three mutants of Azospirillum brasilense Sp245 incapable of both formation of the polar flagellum (Fla-phenotype) and swarming in semisolid media (Swa-phenotype) were characterized. These mutants were shown to have lost the 85-MDa plasmid and to carry the Tn5-Mob transposon and pSUP5011 vector in different regions of their genomes. With the use of A. brasilense Sp245 gene bank, the capacity for both polar flagellum formation and swarming was restored in the above mutants and in the previously generated transposon mutants A. brasilense Sp245 and S27. The transconjugants obtained were only slightly motile in the liquid culture. In the gene bank of Sp245, the recombinant plasmids carrying wild-type fla/swa loci were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号