首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
K Zerfass  H Beier 《The EMBO journal》1992,11(11):4167-4173
RNA-1 molecules from tobacco rattle virus (TRV) and pea early-browning virus (PEBV), two members of the tobravirus group, have recently been shown to contain internal, in-frame UGA termination codons which are suppressed in vitro. Our results suggest that a UGA stop codon also exists in RNA-1 of pepper ringspot virus (PRV), another tobravirus. UGA suppression may therefore be a universal feature of the expression of tobravirus genomes. We have isolated two natural suppressor tRNAs from uninfected tobacco plants on the basis of their ability to promote readthrough over the leaky UGA codon of TRV RNA-1 in a wheat germ extract depleted of endogenous mRNAs and tRNAs. Their amino acid acceptance and nucleotide sequences identify the two UGA-suppressor tRNAs as chloroplast (chl) and cytoplasmic (cyt) tryptophan-specific tRNAs with the anticodon CmCA. These are the first UGA suppressor tRNAs to be identified in plants. They have several interesting features. (i) Chl tRNA(Trp) suppresses the UGA stop codon more efficiently than cyt tRNA(Trp). (ii) Chl tRNA(Trp) contains an A24:U11 pair in the D-stem as does the mutated Escherichia coli UGA-suppressor tRNA(Trp) which is a more active suppressor than wild-type tRNA(Trp). (iii) The suppressor activity of chl tRNA(Trp) is dependent on the nucleotides surrounding the stop codon because it recognizes UGA in the TRV context but not the UGA in the beta-globin context.  相似文献   

2.
A tRNA methylase, in which supK strains of Salmonella typhimurium are deficient, was purified from strain LT2 and characterized. Column chromatography of protein extracts from wild-type cells on phosphocellulose, diethylaminoethyl-Sephadex A-50, and hydroxlapatite resulted in an enzyme that was estimated to be about 50% pure. tRNA from S. typhimurium which had been incubated at pH 9.0 served as a substrate for this methylase. The enzyme has a molecular weight of about 50,000 as estimated by gel chromatography and by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels. The optimal assay conditions, as well as the kinetics and stability of the enzyme, were studied. As with other tRNA-methylating enzymes, S-adenosylhomocysteine is a potent inhibitor.  相似文献   

3.
Neurospora crassa has 10 mapped supersuppressor (ssu) genes. In vivo studies indicate that they suppress amber (UAG) premature termination mutations but the spectrum of their functions remains to be elucidated. We examined seven ssu strains (ssu-1, -2, -3, -4, -5, -9, and -10) using cell-free translation extracts. We tested suppression by requiring it to produce firefly luciferase from a reading frame containing premature UAA, UGA, or UAG terminators. All mutants except ssu-3 suppressed UAG codons. Maximal UAG suppression ranged from 15% to 30% relative to controls containing sense codons at the corresponding position. Production from constructs containing UAA or UGA was 1-2%, similar to levels observed with all nonsense codons in wild-type and ssu-3 extracts. UAG suppression was also seen using [35S]Met to radiolabel polypeptides. Suppression enabled ribosomes to continue translation elongation as determined using the toeprint assay. tRNA from supersuppressors showed suppressor activity when added to wild-type extracts. Thus, these supersuppressors produce amber suppressor tRNA.  相似文献   

4.
Purified preparations of the tRNA methylase deficient in supK strains of Salmonella typhimurium transfer methyl groups from S-adenosylmethionine (SAM) to at least two tRNA species, an alanine tRNA and a serine tRNA. The identity of the tRNA substrates for this enzyme was determined by a change in the elution position of the methyl-labeled tRNA from BND-cellulose columns before and after aminoacylation with a specific amino acid followed by derivatization of the free primary amino group with phenoxy- or naphthoxyacetate. The radioactive methyl group enzymatically added to these tRNAs is both acid and base labile and can be hydrolyzed to a volatile product at pHs above 7.5 and also at pH 1. The methylated 3'-nucleotide isolated from digested tRNA is a pyrimidine derivative and chromatographs like a modified uridylic acid. Its identity has not been established, but it is likely that it corresponds to the methyl ester of V, uridin-5-oxyacetic acid.  相似文献   

5.
The selC gene product, tRNA(Sec), inserts selenocysteine at UGA (opal) codons in a specialized mRNA context. We have investigated the action of the tRNA at ordinary UGA codons, normally not translated, by changing the unusual structural features of tRNA(Sec). Sequences in the D arm, CCA arm and variable arm of the tRNA all contribute to the prohibition against translation of ordinary UGA codons. One multiple mutant is a moderately efficient serine-inserting UGA suppressor tRNA.  相似文献   

6.
The inefficient suppressor sup3-i of the fission yeast Schizosaccharomyces pombe is an ochre suppressor. Sup3-i was derived from the efficient serine inserting UGA suppressor sup3-e. The cloning and sequencing of the sup3-i gene indicate that the suppressor is different from the parent sup3-e by a C----T substitution in the sequence coding for the middle position of the anticodon. In vitro translation assays supplemented with purified sup3-i tRNA and programmed with Xenopus globin mRNAs lead to the accumulation of a readthrough product in response to UAA termination signals, but not in response to UGA termination codons. Transformation of Saccharomyces cerevisiae nonsense mutant strains with plasmid DNA carrying the S. pombe sup3-i gene, led to ochre, but not amber or UGA suppression in vivo.  相似文献   

7.
T. Washburn  J. E. O''Tousa 《Genetics》1992,130(3):585-595
We placed UAA, UAG and UGA nonsense mutations at two leucine codons, Leu205 and Leu309, in Drosophila's major rhodopsin gene, ninaE, by site-directed mutagenesis, and then created the corresponding mutants by P element-mediated transformation of a ninaE deficiency strain. In the absence of a genetic suppressor, flies harboring any of the nonsense mutations at the 309 site, but not the 205 site, show increased rhodopsin activity. Additionally, all flies with nonsense mutations at either site have better rhabdomere structure than does the ninaE deficiency strain. Construction and analysis of a 3'-deletion mutant of ninaE indicates that translational readthrough accounts for the extra photoreceptor activity of the ninaE309 alleles and that truncated opsins are responsible for the improved rhabdomere structure. The presence of leucine-inserting tRNA nonsense suppressors DtLa Su+ and DtLb Su+ in the mutant strains produced a small increase (less than 0.04%) in functional rhodopsin. The opal (UGA) suppressor derived from the DtLa tRNA gene is more efficient than the amber (UAG) or opal suppressor derived from the DtLb gene, and both DtLa and DtLb derived suppressors are more efficient at site 205 than 309.  相似文献   

8.
All mitochondrial tRNAs in kinetoplastid protists are encoded in the nucleus and imported into the organelle. The tRNA(Trp)(CCA) can decode the standard UGG tryptophan codon but can not decode the mitochondrial UGA tryptophan codon. We show that the mitochondrial tRNA(Trp) undergoes a specific C to U nucleotide modification in the first position of the anticodon, which allows decoding of mitochondrial UGA codons as tryptophan. Functional evidence for the absence of a UGA suppressor tRNA in the cytosol, using a reporter gene, was also obtained, which is consistent with a mitochondrial localization of this editing event. Leishmania cells have dealt with the problem of a lack of expression within the organelle of this non-universal tRNA by compartmentalizing an editing activity that modifies the anticodon of the imported tRNA.  相似文献   

9.
UGA Nonsense Mutations in Salmonella typhimurium   总被引:12,自引:5,他引:7       下载免费PDF全文
Salmonella typhimurium strain LT-2 carries a weak UGA suppressor activity. This activity prevents the detection of some UGA mutants as auxotrophs and probably accounts for the rarity of his UGA mutants in this strain. A selection method is described which permits the isolation of these rare his UGA mutants. Map distribution of his UGA mutations is normal, and their polarity effects are indistinguishable from the polarity effects of amber and ochre mutations at similar locations. Isolation and properties of a prototrophic his UGA mutant are described. UGA mutants are common among lac mutants isolated from Salmonella strains carrying an F'lac episome. Apparently the suppressor activity is insufficient to prevent detection of lac UGA mutants. It is not yet clear whether the suppressor activity plays an important role in normal cell physiology.  相似文献   

10.
The intron-containing proline tRNAUGG genes in Saccharomyces cerevisiae can mutate to suppress +1 frameshift mutations in proline codons via a G to U base substitution mutation at position 39. The mutation alters the 3' splice junction and disrupts the bottom base-pair of the anticodon stem which presumably allows the tRNA to read a four-base codon. In order to understand the mechanism of suppression and to study the splicing of suppressor pre-tRNA, we determined the sequences of the mature wild-type and mutant suppressor gene products in vivo and analyzed splicing of the corresponding pre-tRNAs in vitro. We show that a novel tRNA isolated from suppressor strains is the product of frameshift suppressor genes. Sequence analysis indicated that suppressor pre-tRNA is spliced at the same sites as wild-type pre-tRNA. The tRNA therefore contains a four-base anticodon stem and nine-base anticodon loop. Analysis of suppressor pre-tRNA in vitro revealed that endonuclease cleavage at the 3' splice junction occurred with reduced efficiency compared to wild-type. In addition, reduced accumulation of mature suppressor tRNA was observed in a combined cleavage and ligation reaction. These results suggest that cleavage at the 3' splice junction is inefficient but not abolished. The novel tRNA from suppressor strains was shown to be the functional agent of suppression by deleting the intron from a suppressor gene. The tRNA produced in vivo from this gene is identical to that of the product of an intron+ gene, indicating that the intron is not required for proper base modification. The product of the intron- gene is a more efficient suppressor than the product of an intron+ gene. One interpretation of this result is that inefficient splicing in vivo may be limiting the steady-state level of mature suppressor tRNA.  相似文献   

11.
Translation of the UGA triplet in vitro by tryptophan transfer RNA's   总被引:32,自引:0,他引:32  
Tryptophan transfer RNA from the UGA-suppressing strain of Escherichia coli CAJ64 was purified and assayed for suppressor activity in vitro in two ways: by translation of the bacteriophage T4 lysozyme messenger RNA bearing a UGA mutation, and by translation of poly(U-G-A). Purified tRNATrp, and no other fraction, stimulates lysozyme synthesis 30-fold above the level seen when comparable amounts of tryptophan tRNA from the non-suppressing strain, CA244, were added; it also translates poly(U-G-A) as polytryptophan more efficiently than the su tRNA. Tryptophan tRNA from the non-suppressing strain is active in the assays but far less so than CAJ64 tRNATrp, and this is consistent with the leakiness of su strains. Since the nucleotide sequences of these tryptophan tRNA's are known (Hirsh, 1971), it is concluded that tRNA with a CCA anticodon recognizes the UGA triplet and this recognition is improved by a nucleotide change elsewhere in the molecule.  相似文献   

12.
T Mizutani  T Hitaka 《FEBS letters》1988,226(2):227-231
Animal natural suppressor tRNA did not affect the release reaction of reticulocyte release factor (RF) at the same concentration of tRNA (both estimated as being present at a similar level of 3-5 X 10(-8) M in vivo); even at a 10-fold greater concentration the tRNA did not prevent the release reaction with RF. In order to confirm this result, the Ka values were determined. The Ka value between RF and UGA was 1.26 X 10(6) M-1 and that between the suppressor tRNA and UGA amounted to 8 X 10(3) M-1. This result showed that RF had a 150-fold stronger affinity than suppressor tRNA for the opal termination codon. Incorporation of phosphoserine into phosphoprotein via phosphoseryl-tRNA was inhibited by addition of RF to the reaction mixture. These results suggest that animal natural suppressor tRNA in the normal state does not perform its suppressor function, except in special cases where mRNA has the context structure near the opal termination codon (UGA).  相似文献   

13.
Forty-two different sense codons, coding for all 20 amino acids, were placed at the ribosomal E site location, two codons upstream of a UGA or UAG codon. The influence of these variable codons on readthrough of the stop codons was measured in Escherichia coli. A 30-fold difference in readthrough of the UGA codon was observed. Readthrough is not related to any property of the upstream codon, its cognate tRNA or the nature of its codon-anticodon interaction. Instead, it is the amino acid corresponding to the second upstream codon, in particular the acidic/basic property of this amino acid, which seems to be a major determinant. This amino acid effect is influenced by the identity of the A site stop codon and the efficiency of its decoding tRNA, which suggests a correlation with ribosomal pausing. The magnitude of the amino acid effect is in some cases different when UGA is decoded by a wildtype form of tRNA(Trp) as compared with a suppressor form of the same tRNA. This indicates that the structure of the A site decoding tRNA is also a determinant for the amino acid effect.  相似文献   

14.
15.
In Escherichia coli a UGA codon can be efficiently suppressedby a suppressor tRNATrp called Su9. Here, we show that the levelof UGA suppression is determined by the nature of the nucleotideat the 5' side of the anticodon of the suppressor (position33). UGA suppression occurs when a pyrimidine residue is locatedin position 33 of the tRNA, and suppression is more efficientwith a U than with a C in this position. On the other hand,when a purine residue is located at this position UGA suppressionis extremely low. These results show that in the case of tRNASu9, the UGA codon context effect does not require base pairingbetween the nucleotide at the 3' side of the codon and the 5'side of the anticodon.  相似文献   

16.
Factors affecting competition between termination and elongation in vivo during translation of the fdhF selenocysteine recoding site (UGA) were studied with wild-type and modified fdhF sequences. Altering sequences surrounding the recoding site UGA without affecting RNA secondary structure indicated that the kinetics of stop signal decoding have a significant influence on selenocysteine incorporation efficiency. The UGA in the wild-type fdhF sequence remains 'visible' to the factor and forms a site-directed cross-link when mRNA stem-loop secondary structure is absent, but not when it is present. The timing of the secondary structure unfolding during translation may be a critical feature of competition between release factor 2 and tRNA(Sec) for decoding UGA. Increasing the cellular concentration of either of these decoding molecules for termination or selenocysteine incorporation showed that they were able to compete for UGA by a kinetic competition that is dynamic and dependent on the Escherichia coli growth rate. The tRNA(Sec)-mediated decoding can compete more effectively for the UGA recoding site at lower growth rates, consistent with anaerobic induction of fdhF expression.  相似文献   

17.
Transfer RNA nucleotidyltransferase has previously been shown to be required for the normal growth of Escherichia coli and for the biosynthesis of some bacteriophage T4 tRNAs. In order to obtain information about the involvement of this enzyme in E. coli tRNA biosynthesis we have measured the level of activity of suppressors 1 to 6 in strains carrying either a cca+ or cca allele. We found that cca strains, deficient in tRNA nucleotidyltransferase, contained the same amount of suppressor activities as the wild-type cca+ strains as determined by suppression of nonsense mutations in both E. coli alkaline phosphatase and in genes of bacteriophage T4. The results suggest that tRNA nucleotidyltransferase is not required for the biosynthesis of tRNAs specified by suppressors 1 to 6.  相似文献   

18.
The screening of antisuppressor mutants of the yeast Schizosaccharomyces pombe has been successfully accomplished with high resolution liquid chromatographic methods for the analysis of tRNA nucleosides. Antisuppressor mutations reduce or abolish the function of nonsense suppressor-tRNAs or other informational suppressors. Nonradioactive or 35S-labeled unfractionated tRNA from various strains was digested to nucleosides and analyzed by high performance liquid chromatography. The mutant sin3 has lost the nucleoside 5-(methoxycarbonylmethyl)-2-thiouridine from its tRNA in comparison to parental strains. In eukaryotes this nucleoside is found at the first position of the anticodon (wobble position) in several isoacceptor tRNAs that preferentially recognize codons ending with adenosine. The sin3 mutation reduces the efficiency of UGA and UAA suppressor tRNASer and suppressor tRNALeu. The genetic cosegregation of modification loss, antisuppressor phenotype, and a change in cell size is demonstrated. This indicates that a single mutation in the structural gene for a tRNA modification enzyme causes the three different phenotypes.  相似文献   

19.
Intergenic conversion is a mechanism for the concerted evolution of repeated DNA sequences. A new approach for the isolation of intergenic convertants of serine tRNA genes in the yeast Schizosaccharomyces pombe is described. Contrary to a previous scheme, the intergenic conversion events studied in this case need not result in functional tRNA genes. The procedure utilizes crosses of strains that are homozygous for an active UGA suppressor tRNA gene, and the resulting progeny spores are screened for loss of suppressor activity. In this way, intergenic convertants of a tRNA gene are identified that inherit varying stretches of DNA sequence from either of two other tRNA genes. The information transferred between genes includes anticodon and intron sequences. Two of the three tRNA genes involved in these information transfers are located on different chromosomes. The results indicate that intergenic conversion is a conservative process. No infidelity is observed in the nucleotide sequence transfers. This provides further evidence for the hypothesis that intergenic conversion and allelic conversion are the result of the same molecular mechanism. The screening procedure for intergenic revertants also yields spontaneous mutations that inactivate the suppressor tRNA gene. Point mutations and insertions of A occur at various sites at low frequency. In contrast, A insertions at one specific site occur with high frequency in each of the three tRNA genes. This new type of mutation hot spot is found also in vegetative cells.  相似文献   

20.
We have cloned an isogenetic set of UAG, UAA, and UGA suppressors. These include the Su7 -UAG, Su7 -UAA, and Su7 -UGA suppressors derived from base substitutions in the anticodon of Escherichia coli tRNATrp and also Su9 , a UGA suppressor derived from a base substitution in the D-arm of the same tRNA. These genes are cloned on high-copy-number plasmids under lac promoter control. The construction of the Su7 -UAG plasmid and the wild-type trpT plasmid have been previously described ( Yarus , et al., Proc. Natl. Acad. Sci. U.S.A. 77:5092-5097, 1980). Su7 -UAA ( trpT177 ) is a weak suppressor which recognizes both UAA and UAG nonsense codons and probably inserts glutamine. Su7 -UGA ( trpT176 ) is a strong UGA suppressor which may insert tryptophan. Su9 ( trpT178 ) is a moderately strong UGA suppressor which also recognizes UGG (Trp) codons, and it inserts tryptophan. The construction of these plasmids is detailed within. Data on the DNA sequences of these trpT alleles and on amino acid specificity of the suppressors are presented. The efficiency of the cloned suppressors at certain nonsense mutations has been measured and is discussed with respect to the context of these codons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号