首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
Glucagon stimulates gluconeogenesis in part by decreasing the rate of phosphoenolpyruvate disposal by pyruvate kinase. Glucagon, via cyclic AMP (cAMP) and the cAMP-dependent protein kinase, enhances phosphorylation of pyruvate kinase, phosphofructokinase, and fructose-1,6-bisphosphatase. Phosphorylation of pyruvate kinase results in enzyme inhibition and decreased recycling of phosphoenolpyruvate to pyruvate and enhanced glucose synthesis. Although phosphorylation of 6-phosphofructo 1-kinase and fructose-1,6-bisphosphatase is catalyzed in vitro by the cAMP-dependent protein kinase, the role of phosphorylation in regulating the activity of and flux through these enzymes in intact cells is uncertain. Glucagon regulation of these two enzyme activities is brought about primarily by changes in the level of a novel sugar diphosphate, fructose 2,6-bisphosphate. This compound is an activator of phosphofructokinase and an inhibitor of fructose-1,6-bisphosphatase; it also potentiates the effect of AMP on both enzymes. Glucagon addition to isolated liver systems results in a greater than 90% decrease in the level of this compound. This effect explains in large part the effect of glucagon to enhance flux through fructose-1,6-bisphosphatase and to suppress flux through phosphofructokinase. The discovery of fructose 2,6-bisphosphate has greatly furthered our understanding of regulation at the fructose 6-phosphate/fructose 1,6-bisphosphate substrate cycle.  相似文献   

2.
Fructose 1-phosphate kinase was partially purified from Clostridium difficile and used to develop specific assays of fructose 1-phosphate and fructose. The concentration of fructose 1-phosphate was below the detection limit of the assay (25 pmol/mg protein) in hepatocytes incubated in the presence of glucose as sole carbohydrate. Addition of fructose (0.05-1 mM) caused a concentration-dependent and transient increase in the fructose 1-phosphate content. Glucagon (1 microM) and ethanol (10 mM) caused a severalfold decrease in the concentration of fructose 1-phosphate in cells incubated with fructose, whereas the addition of 0.1 microM vasopressin or 10 mM glycerone, or raising the concentration of glucose from 5 mM to 20 mM had the opposite effect. All these agents caused changes in the concentration of triose phosphates that almost paralleled those of the fructose 1-phosphate concentration. Sorbitol had a similar effect to fructose in causing the formation of fructose 1-phosphate. D-Glyceraldehyde was much less potent in this respect than the ketose and its effect disappeared earlier. The effect of D-glyceraldehyde was reinforced by an increase in the glucose concentration and decreased by glucagon. Both fructose and D-glyceraldehyde stimulated the phosphorylation of glucose as estimated by the release of 3H2O from [2-3H]glucose, but the triose was less potent in this respect than fructose and its effect disappeared earlier. Glucagon and ethanol antagonised the effect of low concentrations of fructose or D-glyceraldehyde on the detritiation of glucose. These results support the proposal that fructose 1-phosphate mediates the effects of fructose, D-glyceraldehyde and sorbitol by relieving the inhibition exerted on glucokinase by a regulatory protein.  相似文献   

3.
Experiments performed at micromolar concentrations of inorganic phosphate support the conclusion that liver phosphofructokinase 2 would be completely inactive in the absence of inorganic phosphate or arsenate. The concentration of inorganic phosphate that allowed half-maximal activity decreased with increasing pH, being approximately 0.11 mM at pH 6.5 and 0.05 mM at pH 8. The effect of phosphate was to increase V and to decrease Km for fructose 6-phosphate, without affecting Km for ATP. Citrate and P-enolpyruvate inhibited the enzyme non-competitively with fructose 6-phosphate and independently of the concentration of inorganic phosphate. Phosphorylation of the enzyme by the catalytic subunit of cyclic-AMP-dependent protein kinase did not markedly modify the phosphate requirement and its effect of inactivating phosphofructokinase 2 could not be counteracted by excess phosphate. A nearly complete phosphate dependency was also observed with phosphofructokinase 2 purified from Saccharomyces cerevisiae or from spinach leaves. By contrast, the fructose 2,6-bisphosphatase activity of the liver bifunctional enzyme was not dependent on the presence of inorganic phosphate. Phosphate increased this activity about threefold when measured in the absence of added fructose 6-phosphate and a half-maximal effect was reached at approximately 0.5 mM phosphate. Like glycerol phosphate, phosphate counteracted the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate, but a much higher concentration of phosphate than of glycerol phosphate was required to reach this effect.  相似文献   

4.
Glucagon (250 microgram/kg body wt.) intravenously injected into normal fed rats produces within 5 min a marked inactivation of liver phosphofructokinase, only observed when the enzyme activity is measured at subsaturating concentrations of fructose 6-phosphate. Since half-maximal inactivation is observed at a dose of glucagon of 0.32 microgram/body wt., a dose within the range of the physiological concentrations of the hormone, the inactivation of phosphofructokinase can occur in vivo in response to physiological changes in the concentration of glucagon. In gluconeogenic conditions (starved rats or high-protein-diet-fed rats), there is a marked inactivation of liver phosphofructokinase at subsaturating concentrations of fructose 6-phosphate similar to that found in normal fed rats after glucagon treatment. In these gluconeogenic conditions a 50% decrease in the Vmax. of the enzyme is also observed. No significant changes in phosphofructokinase activity either at subsaturating concentrations of fructose 6-phosphate or in the Vmax. of the enzyme are observed when rats are fed on a high-carbohydrate diet. In the last dietary condition, glucagon treatment produces similar effects to that described in the normal fed rats. Similar results have been obtained in the above condtions for pyruvate kinase L activity when measured at subsaturating concentrations of phosphoenolpyruvate.  相似文献   

5.
1. Recycling of metabolites between fructose 6-phosphate and triose phosphates has been investigated in isolated hepatocytes by the randomization of carbon between C(1) and C(6) of glucose formed from [1-14C]galactose. 2. Randomization of carbon atoms was regularly observed with hepatocytes isolated from fed rats and was then little influenced by the concentration of glucose in the incubation medium. It was decreased by about 50% in the presence of glucagon. 3. Randomization of carbon atoms by hepatocytes isolated from starved rats was barely detectable at physiological concentrations of glucose in the incubation medium, but was greatly increased with increasing glucose concentrations. It was nearly completely suppressed by glucagon. These large changes can be attributed to parallel variations in the activity of phosphofructokinase. 4. The main factors that appear to control the activity of phosphofructokinase under these experimental conditions are the concentration of fructose 6-phosphate, the concentration of fructose 1,6-bisphosphate and also the affinity of the enzyme for fructose 6-phosphate. 5. The affinity of phosphofructokinase for fructose 6-phosphate was diminished by incubation of the cells in the presence of glucagon and also by filtration of an extract of hepatocytes through Sephadex G-25 and by purification of the enzyme. When assayed at 0.25 or 0.5mm-fructose 6-phosphate, the activity of phosphofructokinase present in a liver Sephadex filtrate was increased by a low-molecular-weight effector, which could be isolated from a liver extract by ultrafiltration, gel filtration or heat treatment, but was rapidly destroyed in trichloroacetic acid, even in the cold. This effector appears to be a highly acid-labile phosphoric ester. Its concentration was greatly increased in hepatocytes incubated in the presence of glucose and was decreased in the presence of glucagon.  相似文献   

6.
1. Alterations in phosphofructokinase properties can be reproducibly seen in tissue extracts prepared and rapidly assayed after exposure of rat adipocytes to hormones. 2. Noradrenaline, corticotropin or isoprenaline (isoproterenol; beta-adrenergic agonist) decreased the activity measured with high fructose 6-phosphate concentrations (3--6 mM), but increased activity measured with lower concentrations of this substrate (0.3--0.9 mM). Noradrenaline decreased the Vmax. and the concentration of fructose 6-phosphate that gave half the Vmax.. 3. Insulin opposed the actions of noradrenaline and itself increased phosphofructokinase activity. 4. The effect of noradrenaline appeared to be exerted through a beta- rather than an alpha-type of adrenoceptor. 5. The effects of noradrenaline to decrease phosphofructokinase activity at high [fructose 6-phosphate] and to increase activity at low [fructose 6-phosphate] could be rapidly reversed in cells by addition of the beta-blocker propranolol. 6. The effect of noradrenaline seen at low [fructose 6-phosphate] could be abolished by homogenization of cells in buffer containing albumin or reversed by brief incubation of tissue extracts with albumin, suggesting that this effect of the hormone is due to the association of some ligand with the enzyme.  相似文献   

7.
Fermentation of D-fructose- and D-glucose induced glycolytic oscillations of different period lengths in Saccharomyces carlsbergensis. Recent studies suggested, that D-fructose or one of its metabolites interacted with phosphofructokinase (ATP:D-fructo-6-phosphate 1-phosphofructokinase, EC 2.7.1.11), the core of the glycolytic 'oscillator'. In order to explore the kinetics of interaction, the influence of D-fructose and fructose 1-phosphate on purified yeast phosphofructokinase was studied. D-fructose concentrations up to 0.3 mM stimulated the enzyme, while a further increase led to competitive inhibition. The Hill coefficient for fructose 6-phosphate decreased from 2.8 to 1.0. Fructose 1-phosphate acted in a similar way, up to 1 mM activation and inhibition competitive to fructose 6-phosphate at higher concentration (2.0--3.5 mM) with the same effect on the Hill coefficient. The inhibition patterns obtained with D-fructose or fructose 1-phosphate suggest a sequential random reaction mechanism of yeast phosphofructokinase with fructose 6-phosphate and MgATP2-. The mode of interaction of phosphofructokinase with D-fructose and fructose 1-phosphate is discussed. The influence of both effectors resulted in altered enzyme kinetics, which may cause the different period lengths of glycolytic oscillations.  相似文献   

8.
The hormonal control of [14C]glucose synthesis from [U-14C-A1dihydroxyacetone was studied in hepatocytes from fed and starved rats. In cells from fed rats, glucagon lowered the concentration of substrate giving half-half-maximal rates of incorporation while it had little or no effect on the maximal rate. Inhibitors of gluconeogenesis from pyruvate had no effect on the ability of the hormone to stimulate the synthesis of [14C]glucose from dihydroxyacetone. The concentrations of glucagon and epinephrine giving half-maximal stimulation from dihydroxacetone were 0.3 to 0.4 mM and 0.3 to 0.5 muM, respectively. The meaximal catecholamine stimulation was much less than the maximal stimulation by glucagon and was mediated largely by the alpha receptor. Insulin had no effect on the basal rate of [14C]clucose synthesis but inhibited the effect of submaximal concentration of glucagon or of any concentration of catecholamine. Glucagon had no effect on the uptake of dihydroxyacetone but suppressed its conversion to lactate and pyruvate. This suppression accounted for most of the increase in glucose synthesis. In cells from gasted rats, where lactate production is greatly reduced and the rate of glucose synthesis is elevated, glucagon did not stimulate gluconeogenesis from dihydroxyacetone. Findings with glycerol as substrate were similar to those with dihyroxyacetone. Ethanol also stimulated glucose production from dihydroxyacetone while reducing proportionately the production of lactate. Ethanol is known to generate reducing equivalents fro clyceraldehyde-3-phosphate dehydrogenase and presumably thereby inhibits carbon flux to lactate at this site. Its effect was additive with that of glucagon. Estimates of the steady state levels of intermediary metabolites and flux rates suggested that glucagon activated conversion of fructose diphosphate to fructose 6-phosphate and suppressed conversion of phosphoenolpyruvate to pyruvate. More direct evidence for an inhibition of pyruvate kinase was the observation that brief exposure of cells to glucagon caused up to 70% inhibition of the enzyme activity in homogenates of these cells. The inhibition was not seen when the enzyme was assayed with 20 muM fructose diphosphate. The effect of glucagon to lower fructose diphosphate levels in intact cells may promote the inhibition of pyruvate kinase. The inhibition of pyruvate kinase may reduce recycling in the pathway of gluconeogenesis from major physiological substrates and probably accounts fromsome but not all the stimulatory effect of glucagon.  相似文献   

9.
To clarify the physiological role of fructose 2,6-bisphosphate in the perinatal switching of myocardial fuels from carbohydrate to fatty acids, the kinetic effects of fructose 2,6-bisphosphate on phosphofructokinase purified from fetal and adult rat hearts were compared. For both enzymes at physiological pH and ATP concentrations, 1 microM fructose 2,6-bisphosphate induced a greater than 10-fold reduction in S0.5 for fructose 6-phosphate and it completely eliminated subunit cooperativity. Fructose 2,6-bisphosphate may thereby reduce the influence of changes in fructose 6-phosphate concentration on phosphofructokinase activity. Based on double-reciprocal plots and ATP inhibition studies, adult heart phosphofructokinase activity is more sensitive to physiological changes in ATP and citrate concentrations than to changes in fructose 2,6-bisphosphate concentrations. Fetal heart phosphofructokinase is less sensitive to ATP concentration above 5 mM and equally sensitive to citrate inhibition. The fetal enzyme has up to a 15-fold lower affinity for fructose 2,6-bisphosphate, rendering it more sensitive to changes in fructose 2,6-bisphosphate concentration than adult heart phosphofructokinase. Together, these factors allow greater phosphofructokinase activity in fetal heart while retaining sensitive metabolic control. In both fetal and adult heart, fructose 2,6-bisphosphate is primarily permissive: it abolishes subunit cooperativity and in its presence phosphofructokinase activity is extraordinarily sensitive to both the energy balance of the cell as reflected in ATP concentration and the availability of other fuels as reflected in cytosolic citrate concentration.  相似文献   

10.
The effects of glucagon and insulin on phosphofructokinase activity in isolated chicken hepatocytes were studied. Phosphofructokinase activity was decreased in extracts of hepatocytes exposed to glucagon both at subsaturating (0.2 mM) and saturating (5 mM) concentrations of fructose 6-phosphate. Both effects were still present after Sephadex G-25 gel filtration and subsequent ammonium sulfate precipitation. Half-maximal effects of glucagon were found between 10(-11) and 10(-10) M glucagon. Insulin alone had no effect but decreased the action of glucagon.  相似文献   

11.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

12.
Fructose 2,6-bisphosphate is a powerful activator of yeast phosphofructokinase when assayed at pH levels of ≥7.0. Half maximal stimulation of enzyme activity occurs at 10?7 M levels of Fru 2,6-P2 concentration. This stimulating effect by Fru 2,6-P2 can be synergistic to that exerted by AMP in counteracting the inhibition of phosphofructokinase activity by ATP. The affinity (S0.5) of the yeast enzyme to fructose 6-phosphate changes from 1.5 mM in the absence of Fru 2,6-P2 to 40 μM in its presence.  相似文献   

13.
The regulatory kinetic properties of phosphofructokinase partially purified from the livers of C57BL/KsJ mice were studied. The fructose 6-phosphate saturation curves were highly pH dependent. At a fixed MgATP concentration (1 mM), allosteric kinetics was observed in the range of pH studied (7.3 to 8.3) and the S0.5 values for fructose 6-phosphate decreased by about 0.2 to 0.3 mM for each 0.1-unit increment in pH. Allosteric effects on the sigmoidal response to fructose 6-phosphate: activation by AMP, NH4+, and glucose 1,6-bisphosphate, inhibition by MgATP2-, and synergistic inhibition between ATP and citrate, were all present at pH 8.0 to 8.2. Comparative kinetic studies with liver phosphofructokinase isolated from both the normal (C57BL/KsJ) and the genetically diabetic (C57BL/KsJ-db) mice of 9 to 10 and 15 to 16 weeks of age showed that the enzyme from the livers of diabetic mice exhibited decreased activity at subsaturating concentrations of fructose 6-phosphate. However, phosphofructokinase isolated from the livers of normal and genetically diabetic mice of 4 to 5 weeks of age showed no difference in kinetic properties. Thus, there appears to be a correlation between the change in properties of liver phosphofructokinase and the expression of hyperglycemia and obesity in the genetically diabetic mice. The decreased activity of liver phosphofructokinase in the older diabetic animals may well be one of the causes of the increased blood glucose levels. The results are also discussed in a general context with regard to the possible role of phosphofructokinase in the regulation of hepatic gluconeogenesis.  相似文献   

14.
Glucose 6-phosphate, fructose 6-phosphate, fructose 1, 6-diphosphate, and triose phosphates, and the enzymes phosphofructokinase, aldolase, and glucose 6-phosphate dehydrogenase were extracted from banana fruit (Musa cavendishii, Lambert var. Valery) at the (a) preclimacteric, (b) climacteric rise, (c) climacteric peak, and (d) postclimacteric stages of ripening. The level of fructose 1, 6-diphosphate increased 20-fold whereas the concentration of other intermediates changed no more than 2.5-fold between stages a and c. For these same extracts, phosphofructokinase activity increased 2.5-fold whereas the activity of glucose 6-phosphate dehydrogenase and aldolase changed only fractionally. Substrate saturation studies (fructose 6-phosphate) of phosphofructokinase activity showed a decrease in the [S]0.5 from 5.6 to 1.7 mM betwen stages a and c. The enzyme from both sources seems to be regulated by a negative cooperative effect with the control being more stringent in the enzyme from stage a. The difference in enzyme activity is consistent with the increase in respiratory activity between the two stages.  相似文献   

15.
A steady-state kinetic analysis of plastid phosphofructokinase at pH 8.2 is consistent with the enzyme having a sequential reaction mechanism. Cytosolic phosphofructokinase probably has a similar mechanism. At pH 7.0 plastid phosphofructokinase shows cooperative binding of fructose 6-phosphate and is inhibited by higher concentrations of ATP. In contrast cytosolic phosphofructokinase shows normal kinetics at both pH 8.2 and 7.0 with respect to fructose 6-phosphate and is not inhibited by ATP. In the case of plastid phosphofructokinase the affinity for fructose 6-phosphate increases as the pH is raised from 7 to 8.2 whereas cytosolic phosphofructokinase is affected in an opposite manner. Phosphate is the principal activator of plastid phosphofructokinase since the cooperative kinetics toward fructose 6-phosphate are shifted toward Michaelis-Menten kinetics by 1 mm sodium phosphate and this concentration of phosphate relieves the inhibition by ATP. Both isoenzymes are inhibited by phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate at pH 7.2. Plastid phosphofructokinase is most strongly inhibited by phosphoenol pyruvate with the I0.5 value varying from 0.08 to 0.5 μm depending on substrate concentrations; phosphate reverses this inhibition. In contrast cytosolic phosphofructokinase is much less inhibited by phosphoenolpyruvate with an I0.5 approximately 1000-fold higher. Cytosolic phosphofructokinase is powerfully inhibited by 3-phosphoglycerate with an I0.5 value of 60 μm and this appears to be the principal regulator of this isoenzyme. The two isoenzymes of phosphofructokinase in the endosperm appear, therefore, to be regulated differently. Plastid phosphofructokinase is inhibited by phosphoenolpyruvate and ATP and is activated by phosphate; whereas the cytosolic enzyme is inhibited principally by 3-phosphoglycerate and this inhibition is only partially relieved by phosphate. Some of the differences reported previously for phosphofructokinases from different plant tissues may, therefore, be due to varying ratios of the cytosolic and plastid isoenzymes.  相似文献   

16.
1. The properties of phosphofructokinase after its slight purification from the mucosa of rat jejunum were studied. 2. The enzyme is inhibited by almost 100% by an excess of ATP (1.6mm), with 0.2mm-fructose 6-phosphate. AMP, ADP, P(i) and NH(4) (+) at 0.2, 0.76, 1.0 and 2mm respectively do not individually prevent the inhibition of phosphofructokinase activity by 1.6mm-ATP with 0.2mm-fructose 6-phosphate to any great extent, but all of them together completely prevent the inhibition of phosphofructokinase by ATP. 3. One of the effects of high concentrations of ATP on the enzyme was to increase enormously the apparent K(m) value for the other substrate fructose 6-phosphate, and this increase is largely counteracted by the presence of AMP, ADP, P(i) and NH(4) (+). At low concentrations of ATP the above effectors individually decrease the concentration of fructose 6-phosphate required for half-maximum velocity and when present together they decrease it further, in a more than additive way. 4. When fructose 6-phosphate is present at a saturating concentration (5mm), 0.3mm-NH(4) (+) increases the maximum velocity of the reaction 3.3-fold; with 0.5mm-fructose 6-phosphate, 4.5mm-NH(4) (+) is required for maximum effect. The other effectors do not change the maximum reaction velocity. 5. The results presented here suggest that NH(4) (+), AMP, ADP and P(i) synergistically decrease the inhibition of phosphofructokinase activity at high concentrations of ATP by decreasing the concentration of fructose 6-phosphate required for half-maximum velocity. Such synergism among the effectors and an observed, low ;energy charge' [(ATP+(1/2)ADP)/(AMP+ADP+ATP)] in conjunction with the possibility of a relatively high NH(4) (+) and fructose 6-phosphate concentration in this tissue, may keep the mucosal phosphofructokinase active and uninhibited by ATP under aerobic conditions, thus explaining the high rate of aerobic glycolysis and the lack of Pasteur effect in this tissue.  相似文献   

17.
R S Liou  S Anderson 《Biochemistry》1980,19(12):2684-2688
Striking effects of F-actin and the reconstituted thin filament of muscle on the catalytic activity of rabbit muscle phosphofructokinase are demonstrated through direct measurements of enzymatic activity by using the pH stat. The addition of F-actin to solutions of phosphofructokinase at low ionic strength (10 mM KCl and 5 mM MgCl2) partially reverses the inhibition of the enzyme seen at high ATP concentrations and increases the apparent affinity of the enzyme for fructose 6-phosphate with slight effect on Vmax. F-Actin augments the activation of the enzyme obtained with AMP and partially counters the inhibition obtained with citrate. The maximum effect in the reversal of ATP inhibition is about the same for combinations of either F-actin or the thin filament with AMP as it is for AMP alone. In general, the effect of F-actin on the catalytic activity of phosphofructokinase is larger than that of the thin filament. The activation of phosphofructokinase by F-actin persists at physiological ionic strength.  相似文献   

18.
Fructose-2,6-bisphosphatase from rat liver   总被引:16,自引:0,他引:16  
An enzyme that catalyzes the stoichiometric conversion of fructose 2,6-bisphosphate into fructose 6-phosphate and inorganic phosphate has been purified from rat liver. This fructose 2,6-bisphosphatase copurified with phosphofructokinase 2 (ATP: D-fructose 6-phosphate 2-phosphotransferase) in the several separation procedures used. The enzyme was active in the absence of Mg2+ and was stimulated by triphosphonucleotides in the presence of Mg2+ and also by glycerol 3-phosphate, glycerol 2-phosphate and dihydroxyacetone phosphate. It was strongly inhibited by fructose 6-phosphate at physiological concentrations and this inhibition was partially relieved by glycerol phosphate and dihydroxyacetone phosphate. The activity of fructose 2,6-bisphosphatase was increased severalfold upon incubation in the presence of cyclic-AMP-dependent protein kinase and cyclic AMP. The activation resulted from an increase in V (rate at infinite concentration of substrate) and from a greater sensitivity to the stimulatory action of ATP and of glycerol phosphate at neutral pH. The activity of fructose 2,6-bisphosphatase could also be measured in crude liver preparations and in extracts of hepatocytes. It was then increased severalfold by treatment of the cells with glucagon, when measured in the presence of triphosphonucleotides.  相似文献   

19.
The rate of glucose and fructose 6-phosphate phosphorylation in islet homogenates is reduced by prior fasting of the donor rats. In fed rats, the velocity of glucose phosphorylation at increasing glucose concentrations (0.1 to 100 mM) is compatible with the presence of two enzyme activities. A preferential effect of fasting upon the high Km enzyme activity can be documented either at low ATP concentration which enhances the fractional contribution of the high Km enzyme activity, or in the presence of glucose 6-phosphate, which suppresses the low Km enzyme activity. Islet phosphofructokinase activity was characterized by inhibition by citrate or high ATP concentrations, and relief from ATP inhibition by AMP. Fasting reduces the activity of phosphofructokinase without altering its sensitivity to ATP and AMP. Cyclic AMP fails to overcome the effect of fasting upon phosphofructokinase. The activity of phosphoglucoisomerase is unaffected by fasting. The fasting-induced adaptation of key glycolytic enzymes could account, in part at least, for reduced metabolism of glucose in islets from fasted rats.  相似文献   

20.
We have examined the effects of glucagon on lipogenesis from fasted-refed rats incubated under two conditions, either without added substrate or with 10 mml-lactate. Net glycolysis (from glycogen) occurs in the absence of glucagon. This glycolysis is inhibited by glucagon under conditions of no added lactate, and reversed by glucagon to a net gluconeogenesis in the presence of 10 mm lactate. Glucagon markedly inhibits fatty acid synthesis (estimated by incorporation of tritium from THO) in hepatocytes incubated without added substrate; but, in the presence of 10 mml-lactate, the inhibition of fatty acid synthesis is only about 10%. The inhibition of lipogenesis from endogenous glycogen is primarily caused by inhibition of glycolysis. Glucagon markedly lowers the C-4,5,6C-1,2,3 ratio in glucose produced from [1-14C]galactose, indicating a strong inhibition of phosphofructokinase flux. The C-1,2,3C-4,5,6 ratio in glucose from [1-14C]glycerol is only slightly less than 1, indicating an active fructose diphosphatase flux even under conditions of active net glycolysis. Glucagon increases this ratio only slightly, suggesting that an acute increase of fructose diphosphatase activity by glucagon may occur, but is of much less importance than the decrease of phosphofructokinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号