首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
p27Kip1 is a cyclin-dependent kinase inhibitor that plays a critical role in regulating G1/S transition, and whose activity is, in part, regulated through interactions with D-type cyclins. We have generated the BD1-9 cell line, a BaF3 pro-B cells derivative in which cyclin D1 can be induced rapidly and reversibly by ponasterone A. The induction of cyclin D1 expression leads to a targeted p27Kip1 accumulation in both cytoplasmic and nuclear compartments. But, only the p27Kip1 form phosphorylated on serine 10 (pSer10-p27Kip1) accumulates in BD1-9 cells. We found that the binding of cyclin D1 and pSer10-p27Kip1 prevents p27Kip1 degradation by the cytoplasmic Kip1 ubiquitylation-promoting complex (KPC) proteosomic pathway. Importantly, the nuclear CDK2 activity which is crucial for G1/S transition is not altered by p27Kip1 increase. Using siRNA techniques, we revealed that p27Kip1 inhibition does not affect the distribution of BD1-9 cells in the different phases of the cell cycle. Our study demonstrates that aberrant cyclin D1 expression acts as a p27Kip1 trap in B lymphocytes but does not induce p27Kip1 relocation from the nucleus to the cytoplasm and does not modulate the G1/S transition. Since our cellular model mimics what observed in aggressive lymphomas, our data bring new insights into the understanding of their physiopathology.  相似文献   

2.
The PTEN tumor suppressor functions as a phosphatase of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and negatively regulates the PI 3-kinase signaling pathway. Our previous studies showed that PTEN expression causes accumulation of cyclin-dependent kinase inhibitor p27Kip1 and G1 cell cycle arrest. Here, we show that PTEN negatively regulates expression of cyclin D1 and that cyclin D1 plays a unique role in p27 proteolysis. Co-expression of cyclin D1, but not cyclin E, is sufficient to restore p27 levels in PTEN-expressing cells. Conversely, loss of cyclin D1 by siRNA causes p27 accumulation. Silencing of the cyclin D1 gene or inhibition of the PI 3-kinase pathway prevents formation of the SCFSKP2 complex, with a simultaneous increase in CUL1 binding to CAND1. CAND1-CUL1 binding is known to block the accessibility of CUL1 to SKP1 and SKP2. We have found that CUL1 is less neddylated in cells that have lost cyclin D1 expression. Using an in vitro extract system, we found that the extracts prepared from cells lacking cyclin D1 have reduced activity to neddylate CUL1, in a manner similar to extracts from cells treated with a PI 3-kinase inhibitor or in G0 resting cells. Consistenly, the steady state levels of CUL1 neddylation were found lower under these conditions. Our studies reveal that PTEN/PI 3-kinase signaling and cyclin D1 control a novel pathway that regulates assembly of the SCFSKP2 complex by modulating cullin neddylation and CAND1 binding at the G1/S cell cycle transition.  相似文献   

3.
4.
Cyclin D1与细胞周期调控   总被引:1,自引:0,他引:1  
细胞周期是细胞生命活动中一个最重要的过程,其关键是G1 期的启动.细胞周期蛋白(Cyclin)、细胞周期蛋白依赖性激酶(CDKs)和CDK抑制因子(CKIs)是参与钿胞周期调控的主要因子.Cyclin D1是调控细胞周期G1期的关键蛋白,是一个比其他Cyclins更加敏感的指标,对细胞周期调控至关重要.综述Cyclin D1的结构和功能及其在肿瘤组织中的表达特征,初步分析Cyclin D在昆虫细胞周期调控的研究.  相似文献   

5.
Mechanism of Cdk2/Cyclin E inhibition by p27 and p27 phosphorylation.   总被引:6,自引:0,他引:6  
X Xu  T Nakano  S Wick  M Dubay  L Brizuela 《Biochemistry》1999,38(27):8713-8722
The biochemical interactions between the Cdk2/Cyclin E kinase and its inhibitor p27, were investigated using purified, recombinant p27 and CAK-phosphorylated Cdk2/Cyclin E. From kcat/Km determinations using either histone H1 or pRb as substrates, we found that Cdk2/Cyclin E has 60-fold higher specificity for pRb than for histone H1. The IC50 value of p27 increased with increasing Cdk2/Cyclin E concentrations while it remained constant at various ATP and histone H1 concentrations, suggesting that p27 acts as a tight binding inhibitor of Cdk2/Cyclin E. We also found that p27 could be phosphorylated by Cdk2/Cyclin E only at high enzyme concentrations, and that p27 forms a stable interaction with Cdk2/Cyclin E regardless of its phosphorylation state. Our results further indicate that the Cdk2/Cyclin E/p27 ternary complex is kinetically inactive as an enzyme; instead it serves as a substrate for Cdk2/Cyclin E. These results suggest that if phosphorylation of p27 by Cdk2/Cyclin E is involved in its ubiquitin-dependent degradation, as previously suggested, then the target for such event is the phosphorylated p27 bound to Cdk2/Cyclin E and not free p27.  相似文献   

6.
7.
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27Kip1. Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.  相似文献   

8.
Enhanced intracellular iron levels are essential for proliferation of mammalian cells. If cells have entered S phase when iron is limiting, an adequate supply of deoxynucleotides cannot be maintained and the cells arrest with incompletely replicated DNA. In contrast, proliferating cells that are not in S phase, but have low iron pools, arrest in late G1. In this report the mechanism of iron-dependent G1 arrest in normal fibroblasts was investigated. Cells were synchronized in G0 by contact inhibition and serum deprivation. Addition of serum caused the cells to re-enter the cell cycle and enter S phase. However, if the cells were also treated with the iron chelator deferoxamine, S phase entry was blocked. This corresponded to elevated levels of the cyclin dependent kinase inhibitor p27Kip1 and inhibition of CDK2 activity. Expression of other cell cycle regulatory proteins was not affected, including the induction of cyclins D1 and E. When the quiescent serum starved cells were supplemented with a readily usable form of iron in the absence of serum or any other growth factors, a significant population of the cells entered S phase. This was associated with downregulation of p27Kip1 and increased CDK2 activity. Using an IPTG-responsive construct to artificially raise p27Kip1 levels blocked the ability of iron supplementation to promote S phase entry. Thus it appears that p27Kip1 is a mediator of G1 arrest in iron depleted Swiss 3T3 fibroblasts. We propose that this is part of an iron-sensitive checkpoint that functions to ensure that cells have sufficient iron pools to support DNA synthesis prior to entry into S phase.  相似文献   

9.
10.
The E5/E8 hydrophobic protein of BPV-4 is, at only 42 residues, the smallest transforming protein identified to date. Transformation of NIH-3T3 cells by E5/E8 correlates with up-regulation of both cyclin A-associated kinase activity and, unusually, p27(Kip1) (p27) but does not rely on changes in cyclin E or cyclin E-CDK2 activity. Here we have examined how p27 is prevented from functioning efficiently as a CDK2 inhibitor, and we investigated the mechanisms used to achieve elevated p27 expression in E5/E8 cells. Our results show that normal subcellular targeting of p27 is not subverted in E5/E8 cells, and p27 retains its ability to inhibit both cyclin E-CDK2 and cyclin A-CDK activities upon release from heat-labile complexes. E5/E8 cells also have elevated levels of cyclins D1 and D3, and high levels of nuclear p27 are tolerated because the inhibitor is sequestered within an elevated pool of cyclin D1-CDK4 complexes, a significant portion of which retain kinase activity. In agreement with this, pRB is constitutively hyperphosphorylated in E5/E8 cells in vivo. The increased steady-state level of p27 is achieved largely through an increased rate of protein synthesis and does not rely on changes in p27 mRNA levels or protein half-life. This is the first report of enhanced p27 synthesis as the main mechanism for increasing protein levels in continuously cycling cells. Our results are consistent with a model in which E5/E8 promotes a coordinated elevation of cyclin D1-CDK4 and p27, as well as cyclin A-associated kinase activity, which act in concert to allow continued proliferation in the absence of mitogens.  相似文献   

11.
12.
We report that cyclin D3/cdk4 kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. The association of p27kip1 was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27kip1/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27kip1-specific antibodies. The association of p27kip1 with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27kip1 protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27kip1 kinase activity was present throughout the cell cycle. Since we found that the p27kip1 activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27kip1 and the active cyclin D3 lacking p27kip1 by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27kip1/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27kip1 has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.  相似文献   

13.
14.
p27 mediates Cdk2 inhibition and is also found in cyclin D1-Cdk4 complexes. The present data support a role for p27 in the assembly of D-type cyclin-Cdk complexes and indicate that both cyclin D1-Cdk4-p27 assembly and kinase activation are regulated by p27 phosphorylation. Prior work showed that p27 can be phosphorylated by protein kinase B/Akt (PKB/Akt) at T157 and T198. Here we show that PKB activation and the appearance of p27pT157 and p27pT198 precede p27-cyclin D1-Cdk4 assembly in early G1. PI3K/PKB inhibition rapidly reduced p27pT157 and p27pT198 and dissociated cellular p27-cyclin D1-Cdk4. Mutant p27 allele products lacking phosphorylation at T157 and T198 bound poorly to cellular cyclin D1 and Cdk4. Cellular p27pT157 and p27pT198 coprecipitated with Cdk4 but were not detected in Cdk2 complexes. The addition of p27 to recombinant cyclin D1 and Cdk4 led to cyclin D1-Cdk4-p27 complex formation in vitro. p27 phosphorylation by PKB increased p27-cyclin D1-Cdk4 assembly in vitro but yielded inactive Cdk4. In contrast, Src pretreatment of p27 did not affect p27-cyclin D1-Cdk4 complex formation. However, Src treatment led to tyrosine phosphorylation of p27 and catalytic activation of assembled cyclin D1-Cdk4-p27 complexes. Thus, while PKB-dependent p27 phosphorylation appears to increase cyclin D1-Cdk4-p27 assembly or stabilize these complexes in vitro, cyclin D1-Cdk4-p27 activation requires the tyrosine phosphorylation of p27. Constitutive activation of PKB and Abl or Src family kinases in cancers would drive p27 phosphorylation, increase cyclin D1-Cdk4 assembly and activation, and reduce the cyclin E-Cdk2 inhibitory function of p27. Combined therapy with both Src and PI3K/PKB inhibitors may reverse this process.  相似文献   

15.
The extracellular matrix (ECM) plays an essential role in the regulation of cell proliferation during angiogenesis. Cell adhesion to ECM is mediated by binding of cell surface integrin receptors, which both activate intracellular signaling cascades and mediate tension-dependent changes in cell shape and cytoskeletal structure. Although the growth control field has focused on early integrin and growth factor signaling events, recent studies suggest that cell shape may play an equally critical role in control of cell cycle progression. Studies were carried out to determine when cell shape exerts its regulatory effects during the cell cycle and to analyze the molecular basis for shape-dependent growth control. The shape of human capillary endothelial cells was controlled by culturing cells on microfabricated substrates containing ECM-coated adhesive islands with defined shape and size on the micrometer scale or on plastic dishes coated with defined ECM molecular coating densities. Cells that were prevented from spreading in medium containing soluble growth factors exhibited normal activation of the mitogen-activated kinase (erk1/erk2) growth signaling pathway. However, in contrast to spread cells, these cells failed to progress through G1 and enter S phase. This shape-dependent block in cell cycle progression correlated with a failure to increase cyclin D1 protein levels, down-regulate the cell cycle inhibitor p27Kip1, and phosphorylate the retinoblastoma protein in late G1. A similar block in cell cycle progression was induced before this same shape-sensitive restriction point by disrupting the actin network using cytochalasin or by inhibiting cytoskeletal tension generation using an inhibitor of actomyosin interactions. In contrast, neither modifications of cell shape, cytoskeletal structure, nor mechanical tension had any effect on S phase entry when added at later times. These findings demonstrate that although early growth factor and integrin signaling events are required for growth, they alone are not sufficient. Subsequent cell cycle progression and, hence, cell proliferation are controlled by tension-dependent changes in cell shape and cytoskeletal structure that act by subjugating the molecular machinery that regulates the G1/S transition.  相似文献   

16.
Inhibins are heterodimeric (alpha:betaA and alpha:betaB) endocrine, paracrine, and autocrine factors of the TGFbeta superfamily that are produced predominantly by ovarian granulosa cells in females and testicular Sertoli cells in males. Control of granulosa and Sertoli cell proliferation is lost in the inhibin alpha (Inhalpha) knockout mouse model, leading to gonadotropin-dependent gonadal tumors of the granulosa/Sertoli cell lineage in both females and males. Castrate Inhalpha knockout mice develop sex steroidogenic tumors of the adrenal cortex. Physiological control of granulosa/Sertoli cell cycle progression depends on p27Kip1 and cyclin D2, which function in the G1-->S phase transition. To study the cell cycle-regulatory factors involved in ovarian, testicular, and adrenal tumor development in vivo, we have bred Inhalpha mutant mice to mice with targeted disruptions of the p27 and cyclin D2 genes. Our previous studies demonstrated that inhibins act cooperatively with p27 to negatively regulate granulosa cell proliferation, as double mutant mice lacking inhibins and p27 develop and succumb to ovarian tumors more rapidly than Inhalpha knockout mice. Here, we report that cyclin D2 antagonizes this inhibition and is key in promoting gonadal growth and tumor development, and tumor development is markedly suppressed in double-mutant mice. We found that double-knockout females lacking cyclin D2 and Inhalpha lived longer than mice lacking inhibins alone; the majority of these double-knockout mice lived longer than 17 wk, as opposed to inhibin alpha single-knockout females with 50% survival at between 12 and 13 wk of age. Moreover, 95% of inhibin alpha knockout males succumb to testicular tumor development by 12 wk of age, whereas double knockouts were protected from early signs of tumor development and had a 50% survival of 40 wk. Interestingly, the results of these studies reflect tissue-specific consequences of loss of these cell cycle regulators. In castrate mice, loss of p27 has little effect on adrenal cortical tumor progression in the absence of inhibins, whereas loss of cyclin D2 prolongs the lifespan of cyclin D2, Inhalpha double knockouts. After gonadectomy, 50% of cyclin D2, Inhalpha double-knockout males live to more than 46 wk of age, 10 wk longer than 50% of littermates lacking only inhibins. Similarly, 50% of female cyclin D2, inhibin alpha double knockouts live to 47 wk of age before succumbing to adrenal tumor development, in contrast to the 50% survival of Inhalpha single-knockout females at between 27 and 28 wk. Thus, identification of genetic modifiers of the Inhalpha knockout tumor phenotype has led us to a better appreciation of how specific components of the cell cycle machinery contribute to tumorigenesis in the ovary, testis, and adrenal gland.  相似文献   

17.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   

18.
The nuclear export and cytoplasmic degradation of the cyclin-dependent kinase inhibitor p27 are required for effective progression of the cell cycle through the G(0)-G(1) transition. The mechanism responsible for this translocation of p27 has remained unclear, however. We now show that cyclin D2 directly links growth signaling with the nuclear export of p27 at the G(0)-G(1) transition in some cell types. The up-regulation of cyclin D2 in response to mitogenic stimulation was found to occur earlier than that of other D-type cyclins and in parallel with down-regulation of p27 at the G(0)-G(1) transition. RNA interference-mediated depletion of cyclin D2 inhibited the nuclear export of p27 and delayed its degradation at the G(0)-G(1) transition. In contrast, overexpression of cyclin D2 in G(0) phase shifted the localization of p27 from the nucleus to the cytoplasm and reduced the stability of p27. Overexpression of the cyclin D2(T280A) mutant, whose export from the nucleus is impaired, prevented the translocation and degradation of p27. These results indicate that cyclin D2 translocates p27 from the nucleus into the cytoplasm for its KPC-dependent degradation at the G(0)-G(1) transition.  相似文献   

19.
Levels of p27Kip1, a key negative regulator of the cell cycle, are often decreased in cancer. In most cancers, levels of p27Kip1 mRNA are unchanged and increased proteolysis of the p27Kip1 protein is thought to be the primary mechanism for its down-regulation. Here we show that p27Kip1 protein levels are also down-regulated by microRNAs in cancer cells. We used RNA interference to reduce Dicer levels in human glioblastoma cell lines and found that this caused an increase in p27Kip1 levels and a decrease in cell proliferation. When the coding sequence for the 3'UTR of the p27Kip1 mRNA was inserted downstream of a luciferase reporter gene, Dicer depletion also enhanced expression of the reporter gene product. The microRNA target site software TargetScan predicts that the 3'UTR of p27Kip1 mRNA contains multiple sites for microRNAs. These include two sites for microRNA 221 and 222, which have been shown to be upregulated in glioblastoma relative to adjacent normal brain tissue. The genes for microRNA 221 and microRNA 222 occupy adjacent sites on the X chromosome; their expression appears to be coregulated and they also appear to have the same target specificity. Antagonism of either microRNA 221 or 222 in glioblastoma cells also caused an increase in p27Kip1 levels and enhanced expression of the luciferase reporter gene fused to the p27Kip1 3'UTR. These data show that p27Kip1 is a direct target for microRNAs 221 and 222, and suggest a role for these microRNAs in promoting the aggressive growth of human glioblastoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号