首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pseudomonas sp. strain MC1 was characterized as a cold-adapted, naphthalene-degrading bacterium that is able to grow in a broad temperature range of 5–30°C. MC1 harbors a catabolic plasmid, designated pYIC1, which is almost identical to the archetypal NAH7 plasmid from the mesophilic bacterium Pseudomonas putida G7. On pYIC1, the catabolic genes for naphthalene degradation are clustered in two operons: nahAa-Ab-Ac-Ad-B-F-C-Q-E-D encoding the conversion of naphthalene to salicylate, and nahG-T-H-I-N-L-O-M-K-J encoding the conversion of salicylate through meta-cleavage pathway to pyruvate and acetyl CoA. NahH, the bona fide extradiol dioxygenase in MC1 salicylate metabolism, is thermolabile and is a cold-adapted enzyme. The thermal profiles of the NahH enzyme activities expressed in different hosts indicate the presence of a factor(s) or mechanism(s) to protect the thermolabile NahH enzyme (100% aa identity with MC1 counterpart) in G7. Overall, the results reported in the present work suggest that the thermolabile NahH might be a product of the cold-adaptation process of MC1 and thus contribute to the survival and growth ability of MC1 on salicylate and naphthalene in cold environments.  相似文献   

2.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

3.
4.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

5.
Degradation of phenanthrene by strains Pseudomona, Moscow, KMK, 2004simova, I.A. and Chernov, I.s putida BS3701 (pBS1141, pBS1142), Pseudomonas putida BS3745 (pBS216), and Burkholderia sp. BS3702 (pBS1143) were studied in model soil systems. The differences in accumulation and uptake rate of phenanthrene intermediates between the strains under study have been shown. Accumulation of 1-hydroxy-2-naphthoic acid in soil in the course of phenanthrene degradation by strain BS3702 (pBS1143) in a model system has been revealed. The efficiency of phenanthrene biodegradation was assessed using the mathematical model proposed previously for assessment of naphthalene degradation efficiency. The efficiency of degradation of both phenanthrene and the intermediate products of its degradation in phenanthrene-contaminated soil is expected to increase with the joint use of strains P. Putida BS3701 (pBS1141, pBS1142) and Burkholderia sp. BS3702 (pBS1143).  相似文献   

6.
7.
In addition to the already known cagA gene, novel genetic markers have been associated with Helicobacter pylori (H. pylori) virulence: the dupA and vacAi genes. These genes might play an important role as specific markers to determine the clinical outcome of the disease, especially the vacAi gene, which has been expected to be a good marker of severe pathologies like gastric adenocarcinoma. In the present study, the association of cagA, dupA, and vacAi genes with gastroduodenal pathologies in Chilean patients was studied. One hundred and thirty-two patients positive for H. pylori were divided into two groups—non-severe and severe gastric pathologies—and investigated for the presence of cagA, dupA, and vacAi H. pylori virulence genes by PCR. The cagA gene was detected in 20/132 patients (15.2%), the vacAi1 gene was detected in 54/132 patients (40.9%), the vacAi2 gene was detected in 26/132 patients (19.7%), and the dupA gene was detected in 50/132 (37.9%) patients. Logistic regression model analysis showed that the vacAi1 isoform gene in the infected strains and the severity of the diseases outcome were highly associated, causing severe gastric damage that may lead to gastric cancer (p < 0.0001; OR = 8.75; 95% CI 3.54–21.64). Conversely, cagA (p = 0.3507; OR = 1.62; 95% CI 0.59–4.45) and vacAi2 (p = 0.0114; OR = 3.09; 95% CI 1.26–7.60) genes were not associated with damage, while the dupA gene was associated significantly with non-severe clinical outcome (p = 0.0032; OR = 0.25; 95% CI 0.09–0.65). In addition, dupA gene exerts protection against severe gastric pathologies induced by vacAi1 by delaying the outcome of the disease by approximately 20 years.  相似文献   

8.
Streptomyces coelicolor genome carries two apparently paralogous genes, SCO4164 and SCO5854, that encode putative thiosulfate sulfurtransferases (rhodaneses). These genes (and their presumed translation products) are highly conserved and widely distributed across actinobacterial genomes. The SCO4164 knockout strain was unable to grow on minimal media with either sulfate or sulfite as the sole sulfur source. The SCO5854 mutant had no growth defects in the presence of various sulfur sources; however, it produced significantly less amounts of actinorhodin. Furthermore, we discuss possible links between basic interconversions of inorganic sulfur species and secondary metabolism in S. coelicolor.  相似文献   

9.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

10.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

11.
12.
The chromate ion transporter (CHR) superfamily includes proteins that confer chromate resistance by extruding toxic chromate ions from cytoplasm. Burkholderia xenovorans strain LB400 encodes six CHR homologues in its multireplicon genome and has been reported as highly chromate-resistant. The objective of this work was to analyze the involvement of chr redundant genes in chromate resistance by LB400. It was found that B. xenovorans plant rhizosphere strains lacking the megaplasmid are chromate-sensitive, suggesting that the chr gene present in this replicon is responsible for the chromate-resistance phenotype of the LB400 strain. Transformation of a chromate-sensitive B. xenovorans strain with each of the six cloned LB400 chr genes showed that genes from ‘adaptive replicons’ (chrA1b and chr1NCb from chromosome 2 and chrA2 from the megaplasmid) conferred higher chromate resistance levels than chr genes from ‘central’ chromosome 1 (chrA1a, chrA6, and chr1NCa). An LB400 insertion mutant affected in the chrA2 gene displayed a chromate-sensitive phenotype, which was fully reverted by transferring the chrA2 wild-type gene, and partially reverted by chrA1b or chr1NCb genes. These data indicate that chr genes from adaptive replicons, mainly chrA2 from the megaplasmid, are responsible for the B. xenovorans LB400 chromate-resistance phenotype.  相似文献   

13.
The present study was designed to characterize phenotypically and genotypically a Trueperella pyogenes strain isolated from a brain abscess of an adult roebuck (Capreolus capreolus). The species identity could be confirmed by phenotypical investigations, by MALDI-TOF MS analysis, and by sequencing the 16S ribosomal RNA (rRNA) gene, the 16S–23S rRNA intergenic spacer region (ISR); by sequencing the target genes rpoB, gap, and tuf; and by detection of T. pyogenes chaperonin-encoding gene cpn60 with a previously developed loop-mediated isothermal amplification (LAMP) assay. The T. pyogenes strain could additionally be characterized by PCR-mediated amplification of several known and putative virulence factor-encoding genes which revealed the presence of the genes plo encoding pyolysin and nanH and nanP encoding neuraminidases; the genes fimA, fimC, and fimE encoding the fimbrial subunits FimA, FimC, and FimE; and the gene cbpA encoding collagen-binding protein CbpA. The present data give a detailed characterization of a T. pyogenes strain isolated from a brain abscess of a roebuck. However, the route of infection of the roebuck remains unclear.  相似文献   

14.
15.
16.

Background

The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p.

Results

In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain.

Conclusions

These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.
  相似文献   

17.
The introduction into strain Pseudomonas chlororaphis 449 of plasmid pME6863 that contains the cloned gene for N-acyl-homoserine lactonase, AiiA, leads to the degradation of all three types of N-acylhomoserine lactones produced by this strain (N-butanoyl-homoserine lactone, N-hexanoyl-homoserine lactone, and N-3-oxo-hexanoyl-homoserine lactone). This causes a drastic reduction in the synthesis of phenazine pigment and decreases the ability of cells to migrate on the surface of nutrient medium. However, the antagonistic activity of P. chlororaphis 449 toward phytopathogenic fungi Sclerotinia sclerotiorum and Rhizoctonia solani is not only decreased, but is even slightly increased; no essential changes in the exoprotease activity were observed. It is assumed that one of the QS systems of P. chlororaphis 449 may exert the repression effect on the expression of genes, which determine the two latter cell activities.  相似文献   

18.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

19.
As a byproduct of yeast valine metabolism during fermentation, diacetyl can produce a buttery aroma in wine. However, high diacetyl concentrations generate an aromatic off-flavor and poor quality in wine. 2,3-Butanediol dehydrogenase encoded by BDH1 can catalyze the two reactions of acetoin from diacetyl and 2,3-butanediol from acetoin. BDH2 is a gene adjacent to BDH1, and these genes are regulated reciprocally. In this study, BDH1 and BDH2 were overexpressed in Saccharomyces uvarum to reduce the diacetyl production of wine either individually or in combination. Compared with those in the host strain WY1, the diacetyl concentrations in the recombinant strains WY1-1 with overexpressed BDH1, WY1-2 with overexpressed BDH2 alone, and WY1-12 with co-overexpressed BDH1 and BDH2 were decreased by 39.87, 33.42, and 46.71%, respectively. BDH2 was only responsible for converting diacetyl into acetoin, but not for the metabolic pathway of acetoin to 2,3-butanediol in S. uvarum. This study provided valuable insights into diacetyl reduction in wine.  相似文献   

20.

Objectives

To characterize the genes responsible for ethanol utilization in Pichia pastoris.

Results

ADH3 (XM_002491337) and ADH (FN392323) genes were disrupted in P. pastoris. The ADH3 mutant strain, MK115 (Δadh3), lost its ability to grow on minimal ethanol media but produced ethanol in minimal glucose medium. ADH3p was responsible for 92 % of total Adh enzyme activity in glucose media. The double knockout strain MK117 (Δadh3Δadh) also produced ethanol. The Adh activities of X33 and MK116 (Δadh) strains were not different. Thus, the ADH gene does not play a role in ethanol metabolism.

Conclusion

The PpADH3 is the only gene responsible for consumption of ethanol in P. pastoris.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号