首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.  相似文献   

2.
We investigate effects of random perturbations on the dynamics of one-dimensional maps (single species difference equations) and of finite dimensional flows (differential equations for n species). In particular, we study the effects of noise on the invariant measure, on the correlation dimension of the attractor, and on the possibility of detecting the nonlinear deterministic component by applying reconstruction techniques to the time series of population abundances. We conclude that adding noise to maps with a stable fixed-point obscures the underlying determinism. This turns out not to be the case for systems exhibiting complex periodic or chaotic motion, whose essential properties are more robust. In some cases, adding noise reveals deterministic structure which otherwise could not be observed. Simulations suggest that similar results hold for flows whose attractor is almost two-dimensional.  相似文献   

3.
Diversity of temporal self-organized behaviors in a biochemical system.   总被引:3,自引:0,他引:3  
The numerical study of a glycolytic model formed by a system of three delay-differential equations revealed a notable richness of temporal structures which included the three main routes to chaos, as well as a multiplicity of stable coexisting states. The Feigenbaum, intermitency and quasiperiodicity routes to chaos can emerge in the biochemical oscillator. Moreover, different types of birhythmicity, trirhythmicity and hard excitation emerge in the phase space. For a single range of the control parameter it can be observed the coexistence of two quasiperiodicity routes to chaos, the coexistence of a stable steady state with a stable torus, and the coexistence of a strange attractor with different stable regimes such as chaos with different periodic regimes, chaos with bursting behavior, and chaos with torus. In most of the numerical studies, the biochemical oscillator has been considered under periodic input flux being the mean input flux rate 6 mM/h. On the other hand, several investigators have observed quasiperiodic time patterns and chaotic oscillations by monitoring the fluorescence of NADH in glycolyzing yeast under sinusoidal glucose input flux. Our numerical results match well with these experimental studies.  相似文献   

4.
5.
 A particular tri-trophic (resource, prey, predator) metapopulation model with dispersal of preys and predators is considered in this paper. The analysis is carried out numerically, by finding the bifurcations of the equilibria and of the limit cycles with respect to prey and predator body sizes. Two routes to chaos are identified. One is characterized by an intriguing cascade of flip and tangent bifurcations of limit cycles, while the other corresponds to the crisis of a strange attractor. The results are summarized by partitioning the space of body sizes in eight subregions, each one of which is associated to a different asymptotic behavior of the system. Emphasis is put on the possibility of having different modes of coexistence (stationary, cyclic, and chaotic) and/or extinction of the predator population. Received 1 August 1995; received in revised form 8 January  相似文献   

6.
In the presence of seasonal forcing, predator-prey models with quadratic interaction terms and weak dissipation can exhibit infinite numbers of coexisting periodic attractors corresponding to cycles of different magnitude and frequency. These motions are best understood with reference to the conservative case, for which the degree of dissipation is, by definition, zero. Here one observes the familiar mix of “regular” (neutrally stable orbits and tori) and chaotic motion typical of non-integrable Hamiltonian systems. Perturbing away from the conservative limit, the chaos becomes transitory. In addition, the invariant tori are destroyed and the neutrally stable periodic orbits becomes stable limit cycles, the basins of attraction of which are intertwined in a complicated fashion. As a result, stochastic perturbations can bounce the system from one basin to another with consequent changes in system behavior. Biologically, weak dissipation corresponds to the case in which predators are able to regulate the density of their prey well below carrying capacity.  相似文献   

7.
The coexistence of periodic and point attractors has been confirmed for a range of stage-structured discrete time models. The periodic attractor cycles have large amplitude, with the populations cycling between extremely low and surprisingly high values when compared to the equilibrium level. In this situation a stable state can be shocked by noise of sufficient strength into a state of high volatility. We found that the source of these large amplitude cycles are Arnold tongues, special regions of parameter space where the system exhibits periodic behaviour. Most of these tongues lie entirely in that part of parameter space where the system is unstable, but there are exceptions and these exceptions are the tongues that lead to attractor coexistence. Similarity in the geometry of Arnold tongues over the range of models considered might suggest that this is a common feature of stage-structured models but in the absence of proof this can only be a useful working hypothesis. The analysis shows that although large amplitude cycles might exist mathematically they might not be accessible biologically if biological constraints, such as non-negativity of population densities and vital rates, are imposed. Accessibility is found to be highly sensitive to model structure even though the mathematical structure is not. This highlights the danger of drawing biological conclusions from particular models. Having a comprehensive view of the different mechanisms by which periodic states can arise in families of discrete time models is important in the debate on whether the causes of periodicity in particular ecological systems are intrinsic, environmental or trophic. This paper is a contribution to that continuing debate.  相似文献   

8.
Chaos is a central feature of human locomotion and has been suggested to be a window to the control mechanisms of locomotion. In this investigation, we explored how the principles of chaos can be used to control locomotion with a passive dynamic bipedal walking model that has a chaotic gait pattern. Our control scheme was based on the scientific evidence that slight perturbations to the unstable manifolds of points in a chaotic system will promote the transition to new stable behaviors embedded in the rich chaotic attractor. Here we demonstrate that hip joint actuations during the swing phase can provide such perturbations for the control of bifurcations and chaos in a locomotive pattern. Our simulations indicated that systematic alterations of the hip joint actuations resulted in rapid transitions to any stable locomotive pattern available in the chaotic locomotive attractor. Based on these insights, we further explored the benefits of having a chaotic gait with a biologically inspired artificial neural network (ANN) that employed this chaotic control scheme. Remarkably, the ANN was quite robust and capable of selecting a hip joint actuation that rapidly transitioned the passive dynamic bipedal model to a stable gait embedded in the chaotic attractor. Additionally, the ANN was capable of using hip joint actuations to accommodate unstable environments and to overcome unforeseen perturbations. Our simulations provide insight on the advantage of having a chaotic locomotive system and provide evidence as to how chaos can be used as an advantageous control scheme for the nervous system.  相似文献   

9.
Recent theory shows that: (i) competition between multiple species for multiple resources may generate oscillations and chaotic fluctuations in species abundances; and (ii) these non-equilibrium dynamics may favor a high biodiversity. These findings were based on Liebigs Law of the Minimum, which assumes that each species is limited by only one resource at a time. In reality, however, resources can have interactive effects on growth. Here, we investigate whether competition for interactively essential resources may generate oscillations and chaos as well. Our results show that competition for interactively essential resources may, indeed, exhibit dynamics of similar complexity. This illustrates the wide potential for non-equilibrium dynamics generated by multispecies competition, and suggests that competitive chaos may occur on a wide variety of different resource types.  相似文献   

10.
This paper considers the dynamics of a discrete-time Kolmogorov system for two-species populations. In particular, permanence of the system is considered. Permanence is one of the concepts to describe the species coexistence. By using the method of an average Liapunov function, we have found a simple sufficient condition for permanence of the system. That is, nonexistence of saturated boundary fixed points is enough for permanence of the system under some appropriate convexity or concavity properties for the population growth rate functions. Numerical investigations show that for the system with population growth rate functions without such properties, the nonexistence of saturated boundary fixed points is not sufficient for permanence, actually a boundary periodic orbit or a chaotic orbit can be attractive despite the existence of a stable coexistence fixed point. This result implies, in particular, that existence of a stable coexistence fixed point is not sufficient for permanence.  相似文献   

11.
We examine the conditions necessary for the emergence of complex dynamic behavior in systems of microbial competition. In particular, we study the effect of spatial heterogeneity and substrate-inhibition on the dynamics of such a system. This is accomplished through the study of a mathematical model of two microbial populations competing for a single nutrient in a configuration of two interconnected chemostats. Microbial growth is assumed to follow substrate-inhibited kinetics for both species. Such a system with sterile feed has been shown in a previous work to exhibit stable periodic states. In the present work we study the system for the case of non-sterile feed, i.e., when the two species are present in the feed of the chemostats. The analysis is done by numerical bifurcation theory methods. We demonstrate that, in addition to periodic states, the system possesses stable quasi-periodic states resulting from Neimark-Sacker bifurcations of limit cycles. Also, periodic states may undergo successive period doublings leading to periodic states of increasing period and indicating that chaotic states might be possible. Multistability is also observed, consisting in the coexistence of several stable steady states and possibly stable periodic or quasi-periodic states for given operating conditions. It appears that substrate-inhibition, spatial heterogeneity and presence of microorganisms in the inflow are all necessary conditions for complex dynamics to arise in a microbial system of pure and simple competition.  相似文献   

12.
When can noise induce chaos and why does it matter: a critique   总被引:1,自引:0,他引:1  
S. P. Ellner 《Oikos》2005,111(3):620-631
Noise‐induced chaos illustrates how small amounts of exogenous noise can have disproportionate qualitative impacts on the long term dynamics of a nonlinear system. This property is particularly clear in chaotic systems but is also important for the majority of ecological systems which are nonchaotic, and has direct implications for analyzing ecological time series and testing models against field data. Dennis et al. point out that a definition of chaos which we advocated allows a noise‐dominated system to be classified as chaotic when its Lyapunov exponent λ is positive, which misses what is really going on. As a solution, they propose to eliminate the concept of noise‐induced chaos: chaos “should retain its strictly deterministic definition”, hence “ecological populations cannot be strictly chaotic”. Instead, they suggest that ecologists ask whether ecological systems are strongly influenced by “underlying skeletons with chaotic dynamics or whatever other dynamics”– the skeleton being the hypothetical system that would result if all external and internal noise sources were eliminated. We agree with Dennis et al. about the problem – noise‐dominated systems should not be called chaotic – but not the solution. Even when an estimated skeleton predicts a system's short term dynamics with extremely high accuracy, the skeleton's long term dynamics and attractor may be very different from those of the actual noisy system. Using theoretical models and empirical data on microtine rodent cycles and laboratory populations of Tribolium, we illustrate how data analyses focusing on attributes of the skeleton and its attractor – such as the “deterministic Lyapunov exponent”λ0 that Dennis et al. have used as their primary indicator of chaos – will frequently give misleading results. In contrast, quantitative measures of the actual noisy system, such as λ, provide useful information for characterizing observed dynamics and for testing proposed mechanistic explanations.  相似文献   

13.
Walz  Norbert 《Hydrobiologia》1993,(1):165-170
Derived from the Monod-model and regulating principles a regulation model of the rotifer development in chemostats was developed. The model was validated in continuous cultures of Brachionus angularis both in steady-states, when undisturbed, and in transient-states after perturbations by step changes of dilution rate or input substrate concentration. Simulations of the simple model monotonically approached steady-states, but cultures show overshoots and damped oscillations before reaching this state. After introducing time-lags into the model it depends on the size of the time lag if model rotifer densities reach stable steady-state values (at low time lags) or stable limit cycles with periodic oscillations (at high time lags). At even higher time lags chaotic conditions occur in the model with final extinction of the rotifers.  相似文献   

14.
Can noise induce chaos?   总被引:5,自引:0,他引:5  
An important component of the mathematical definition of chaos is sensitivity to initial conditions. Sensitivity to initial conditions is usually measured in a deterministic model by the dominant Lyapunov exponent (LE), with chaos indicated by a positive LE. The sensitivity measure has been extended to stochastic models; however, it is possible for the stochastic Lyapunov exponent (SLE) to be positive when the LE of the underlying deterministic model is negative, and vice versa. This occurs because the LE is a long-term average over the deterministic attractor while the SLE is the long-term average over the stationary probability distribution. The property of sensitivity to initial conditions, uniquely associated with chaotic dynamics in deterministic systems, is widespread in stochastic systems because of time spent near repelling invariant sets (such as unstable equilibria and unstable cycles). Such sensitivity is due to a mechanism fundamentally different from deterministic chaos. Positive SLE's should therefore not be viewed as a hallmark of chaos. We develop examples of ecological population models in which contradictory LE and SLE values lead to confusion about whether or not the population fluctuations are primarily the result of chaotic dynamics. We suggest that "chaos" should retain its deterministic definition in light of the origins and spirit of the topic in ecology. While a stochastic system cannot then strictly be chaotic, chaotic dynamics can be revealed in stochastic systems through the strong influence of underlying deterministic chaotic invariant sets.  相似文献   

15.
B. Doyon 《Acta biotheoretica》1992,40(2-3):113-119
Chaos theory is a rapidly growing field. As a technical term, “chaos” refers to deterministic but unpredictable processes being sensitively dependent upon initial conditions. Neurobiological models and experimental results are very complicated and some research groups have tried to pursue the “neuronal chaos”. Babloyantz's group has studied the fractal dimension (d) of electroencephalograms (EEG) in various physiological and pathological states. From deep sleep (d=4) to full awakening (d>8), a hierarchy of “strange” attractors paralles the hierarchy of states of consciousness. In epilepsy (petit mal), despite the turbulent aspect of a seizure, the attractor dimension was near to 2. In Creutzfeld-Jacob disease, the regular EEG activity corresponded to an attractor dimension less than the one measured in deep sleep. Is it healthy to be chaotic? An “active desynchronisation” could be favourable to a physiological system. Rapp's group reported variations of fractal dimension according to particular tasks. During a mental arithmetic task, this dimension increased. In another task, a P300 fractal index decreased when a target was identified. It is clear that the EEG is not representing noise. Its underlying dynamics depends on only a few degrees of freedom despite yet it is difficult to compute accurately the relevant parameters. What is the cognitive role of such a chaotic dynamics? Freeman has studied the olfactory bulb in rabbits and rats for 15 years. Multi-electrode recordings of a few mm2 showed a chaotic hierarchy from deep anaesthesia to alert state. When an animal identified a previously learned odour, the fractal dimension of the dynamics dropped off (near limit cycles). The chaotic activity corresponding to an alert-and-waiting state seems to be a field of all possibilities and a focused activity corresponds to a reduction of the attractor in state space. For a couple of years, Freeman has developed a model of the olfactory bulb-cortex system. The behaviour of the simple model “without learning” was quite similar to the real behaviour and a model “with learning” is developed. Recently, more and more authors insisted on the importance of the dynamic aspect of nervous functioning in cognitive modelling. Most of the models in the neural-network field are designed to converge to a stable state (fixed point) because such behaviour is easy to understand and to control. However, some theoretical studies in physics try to understand how a chaotic behaviour can emerge from neural networks. Sompolinsky's group showed that a sharp transition from a stable state to a chaotic state occurred in totally interconnected networks depending on the value of one control parameter. Learning in such systems is an open field. In conclusion, chaos does exist in neurophysiological processes. It is neither a kind of noise nor a pathological sign. Its main role could be to provide diversity and flexibility to physiological processes. Could “strange” attractors in nervous system embody mental forms? This is a difficult but fascinating question.  相似文献   

16.
Summary The dynamics of density-dependent population models can be extraordinarily complex as numerous authors have displayed in numerical simulations. Here we commence a theoretical analysis of the mathematical mechanisms underlying this complexity from the viewpoint of modern dynamical systems theory. After discussing the chaotic behavior of one-dimensional difference equations we proceed to illustrate the general theory on a density-dependent Leslie model with two age classes. The pattern of bifurcations away from the equilibrium point is investigated and the existence of a strange attractor is demonstrated — i.e. an attracting limit set which is neither an equilibrium nor a limit cycle. Near the strange attractor the system exhibits essentially random behavior. An approach to the statistical analysis of the dynamics in the chaotic regime is suggested. We then generalize our conclusions to higher dimensions and continuous models (e.g. the nonlinear von Foerster equation).Supported by NSF Grant No. BMS 74-21240.  相似文献   

17.
The period-doubling route to chaos has occupied a prominent position and it is still object of great interest among the different complex phenomena observed in nonlinear dynamical systems. The reason of such interest is that such route to chaos has been observed in many physical, chemical and ecological models when they change over from simple periodic to complex aperiodic motion. In interlinked social–ecological systems (SESs) there might be an apparent great ability to cope with change and adapt if analysed only in their social dimension. However, such an adaptation may be at the expense of changes in the capacity of ecosystems to sustain the adaptation and it could affect the quality of ecosystem goods and services since it could degrade natural renewable and non-renewable resources and generate traps and breakpoints in the whole SES eventually leading to chaotic behaviour. This paper is rooted in previous results on modelling tourism-based SESs, only recently object of theoretical investigations, focusing on the dynamics of the coexistence between mass-tourists and eco-tourists. Here we describe a finer scale analysis of time-dependent regimes in the ranges of the degradation coefficient (bifurcation parameter), for which the system can exhibit coexistence. This bifurcation parameter is determined by objective changes in the real world in the quality of ecosystem goods and services together with whether and how such changes are perceived by different tourist typologies. Varying the bifurcation parameter, the dynamical system may in fact evolve toward an aperiodical dynamical state in many ways, showing that there could be different scenarios for the transition to chaos. This paper provides a further evidence for the period-doubling route to chaos with reference to tourism-based socio-ecological models, and for a period locking behaviour, where a small variation in the bifurcation parameter can lead to alternating regular and chaotic dynamics. Moreover, for many models undergoing chaos via period-doubling, it has been showed that structural perturbations with real ecological justification, may break and reverse the expected period-doublings, hence inhibiting chaos. This feature may be of a certain relevance also in the context of adaptive management of tourism-based SESs: these period-doubling reversals might in fact be used to control chaos, since they potentially act in way to suppress possibly dangerous fluctuations.  相似文献   

18.

Background

Long-range oscillations of the mammalian cell proliferation rate are commonly observed both in vivo and in vitro. Such complicated dynamics are generally the result of a combination of stochastic events and deterministic regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene expression, and tumor growth.

Methodology/Principal Findings

Using a simple, original, nonlinear method based on return maps, we previously found a geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However, nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be observed in periodic or stochastic fluctuations.

Conclusion/Significance

Theoretical models predict various cell population dynamics, from stable through periodically oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells, but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled.  相似文献   

19.
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially explicit “expansion‐collision dynamics” generate periodic transitions between two distinct selective regimes, “expansion competition” and “boundary competition,” each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion‐ and boundary‐competition specialists by generating time‐varying, negative frequency‐dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exoenzyme secreting “cooperator” strain (expansion–competition specialists) against nonsecreting “defectors” (boundary–competition specialists). As predicted, we observed cooperator–defector coexistence or cooperator dominance with expansion–collision dynamics, but only defector dominance otherwise. Also as predicted, the steady‐state frequency of cooperators was determined by colonization density (the average initial cell–cell distance) and cost of cooperation. Lattice‐based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion–collision dynamics with costly public goods production is sufficient to generate stable cooperator–defector coexistence. This mechanism may be important for maintaining public–goods cooperation and conflict in microbial pioneer species living on surfaces.  相似文献   

20.
A general class of lumped parameter models describing the local dynamics of a tri-trophic chain in a controlled environment is analyzed in detail. The trophic functions characterizing the interactions are defined only by some properties and allow us to treat both prey-dependent and ratio-dependent models in a unified manner. Conditions for existence and stability of extinction and coexistence equilibrium states are determined. Some peculiar aspects of the dynamics of the system depending on the bioecological parameters are presented, with particular attention to bistability situations, limit cycles and chaotic behaviours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号