首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ER-resident proteins destined for degradation are dislocated into the cytosol by components of the ER quality control machinery for proteasomal degradation. Dislocation substrates are ubiquitylated in the cytosol by E2 ubiquitin-conjugating/E3 ligase complexes. UBE2J1 is one of the well-characterized E2 enzymes that participate in this process. However, the physiological function of Ube2j1 is poorly defined. We find that Ube2j1−/− mice have reduced viability and fail to thrive early after birth. Male Ube2j1−/− mice are sterile due to a defect in late spermatogenesis. Ultrastructural analysis shows that removal of the cytoplasm is incomplete in Ube2j1−/− elongating spermatids, compromising the release of mature elongate spermatids into the lumen of the seminiferous tubule. Our findings identify an essential function for the ubiquitin-proteasome-system in spermiogenesis and define a novel, non-redundant physiological function for the dislocation step of ER quality control.  相似文献   

2.
Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48‐linked polyubiquitination by ER‐associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER‐associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48‐linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER‐associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self‐association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48‐linked ubiquitin chains.  相似文献   

3.
The ubiquitin E2 enzymes, Ube2g1 and Ube2r1, are able to synthesize Lys-48-linked polyubiquitins without an E3 ligase but how that is accomplished has been unclear. Although both E2s contain essential acidic loops, only Ube2r1 requires an additional C-terminal extension (184–196) for efficient Lys-48-ubiquitylation activity. The presence of Tyr-102 and Tyr-104 in the Ube2g1 acidic loop enhanced both ubiquitin binding and Lys-48-ubiquitylation and distinguished Ube2g1 from the otherwise similar truncated Ube2r11–183 (Ube2r1C). Replacement of Gln-105–Ser-106–Gly-107 in the acidic loop of Ube2r1C (Ube2r1CYGY) by the corresponding residues from Ube2g1 (Tyr-102–Gly-103–Tyr-104) increased Lys-48-ubiquitylation activity and ubiquitin binding. Two E2∼UB thioester mimics (oxyester and disulfide) were prepared to characterize the ubiquitin binding activity of the acidic loop. The oxyester but not the disulfide derivative was found to be a functional equivalent of the E2∼UB thioester. The ubiquitin moiety of the Ube2r1CC93S-[15N]UBK48R oxyester displayed two-state conformational exchange, whereas the Ube2r1CC93S/YGY-[15N]UBK48R oxyester showed predominantly one state. Together with NMR studies that compared UBK48R oxyesters of the wild-type and the acidic loop mutant (Y102G/Y104G) forms of Ube2g1, in vitro ubiquitylation assays with various mutation forms of the E2s revealed how the intramolecular interaction between the acidic loop and the attached donor ubiquitin regulates Lys-48-ubiquitylation activity.  相似文献   

4.
5.
Modification of proteins with ubiquitin and ubiquitin-like molecules is involved in the regulation of almost every biological process. Historically, each conjugation pathway has its unique set of E1, E2 and E3 enzymes that lead to activation and conjugation of their cognate molecules. Here, we present the unexpected finding that under stress conditions, the ubiquitin E1 enzyme Ube1 mediates conjugation of the ubiquitin-like molecule NEDD8. Inhibition of the 26S proteasome, heat shock and oxidative stress cause a global increase in NEDDylation. Surprisingly, this does not depend on the NEDD8 E1-activating enzyme, but rather on Ube1. A common event in the tested stress conditions is the depletion of “free” ubiquitin. A decrease in “free” ubiquitin levels in the absence of additional stress is sufficient to stimulate NEDDylation through Ube1. Further analysis on the NEDD8 proteome shows that the modified NEDDylated proteins are simultaneously ubiquitinated. Mass spectrometry on the complex proteome under stress reveals the existence of mixed chains between NEDD8 and ubiquitin. We further show that NEDDylation of the p53 tumor suppressor upon stress is mediated mainly through Ube1. Our studies reveal an unprecedented interplay between NEDD8 and ubiquitin pathways operating in diverse cellular stress conditions.  相似文献   

6.
The human Ube2J2 enzyme functions in the ubiquitination of proteins at the ER. Here we demonstrate that it, and a second ubiquitin conjugating (Ubc) enzyme Ube2G2, are unstable, and incubation of transfected cells with proteasome inhibitors increased steady-state protein levels. For Ube2J2, pharmacological induction of the unfolded protein response (UPR) did not significantly alter ectopic protein levels, however the effect of proteasomal inhibition was abolished if the enzyme was inactivated or truncated to disrupt its ER-localization. These results suggest for the first time that the steady state expression of Ubcs’ may be important in regulating the degradation of ER proteins in mammalian cells.  相似文献   

7.
Cells respond rapidly to endoplasmic reticulum (ER) stress by blocking protein translation, increasing protein folding capacity, and accelerating degradation of unfolded proteins via ubiquitination and ER-associated degradation pathways. The ER resident type 2 deiodinase (D2) is normally ubiquitinated and degraded in the proteasome, a pathway that is accelerated by enzyme catalysis of T(4) to T(3). To test whether D2 is normally processed through ER-associated degradation, ER stress was induced in cells that endogenously express D2 by exposure to thapsigargin or tunicamycin. In all cell models, D2 activity was rapidly lost, to as low as of 30% of control activity, without affecting D2 mRNA levels; loss of about 40% of D2 activity and protein was also seen in human embryonic kidney 293 cells transiently expressing D2. In primary human airway cells with ER stress resulting from cystic fibrosis, D2 activity was absent. The rapid ER stress-induced loss of D2 resulted in decreased intracellular D2-mediated T(3) production. ER stress-induced loss of D2 was prevented in the absence of T(4), by blocking the proteasome with MG-132 or by treatment with chemical chaperones. Notably, ER stress did not alter D2 activity half-life but rather decreased D2 synthesis as assessed by induction of D2 mRNA and by [(35)S]methionine labeling. Remarkably, ER-stress-induced loss in D2 activity is prevented in cells transiently expressing an inactive eukaryotic initiation factor 2, indicating that this pathway mediates the loss of D2 activity. In conclusion, D2 is selectively lost during ER stress due to an eukaryotic initiation factor 2-mediated decrease in D2 synthesis and sustained proteasomal degradation. This explains the lack of D2 activity in primary human airway cells with ER stress resulting from cystic fibrosis.  相似文献   

8.
9.
Regulation of ribonucleotide reductase (RNR) is important for cell survival and genome integrity in the face of genotoxic stress. The Mec1/Rad53/Dun1 DNA damage response kinase cascade exhibits multifaceted controls over RNR activity including the regulation of the RNR inhibitor, Sml1. After DNA damage, Sml1 is degraded leading to the up-regulation of dNTP pools by RNR. Here, we probe the requirements for Sml1 degradation and identify several sites required for in vivo phosphorylation and degradation of Sml1 in response to DNA damage. Further, in a strain containing a mutation in Rnr1, rnr1-W688G, mutation of these sites in Sml1 causes lethality. Degradation of Sml1 is dependent on the 26S proteasome. We also show that degradation of phosphorylated Sml1 is dependent on the E2 ubiquitin-conjugating enzyme, Rad6, the E3 ubiquitin ligase, Ubr2, and the E2/E3-interacting protein, Mub1, which form a complex previously only implicated in the ubiquitylation of Rpn4.  相似文献   

10.
11.

Background

Amyotrophic lateral sclerosis (ALS) is a disease caused by motor neuron degeneration. Recently, a novel SIGMAR1 gene variant (p.E102Q) was discovered in some familial ALS patients.

Methods

We address mechanisms underlying neurodegeneration caused by the mutation using Neuro2A cells overexpressing σ1RE102Q, a protein of a SIGMAR1 gene variant (p.E102Q) and evaluate potential amelioration by ATP production via methyl pyruvate (MP) treatment.

Results

σ1RE102Q overexpression promoted dissociation of the protein from the endoplasmic reticulum (ER) membrane and cytoplasmic aggregation, which in turn impaired mitochondrial ATP production and proteasome activity. Under ER stress conditions, overexpression of wild-type σ1R suppressed ER stress-induced mitochondrial injury, whereas σ1RE102Q overexpression aggravated mitochondrial damage and induced autophagic cell death. Moreover, σ1RE102Q-overexpressing cells showed aberrant extra-nuclear localization of the TAR DNA-binding protein (TDP-43), a condition exacerbated by ER stress. Treatment of cells with the mitochondrial Ca2 + transporter inhibitor Ru360 mimicked the effects of σ1RE102Q overexpression, indicating that aberrant σ1R-mediated mitochondrial Ca2 + transport likely underlies TDP-43 extra-nuclear localization, segregation in inclusion bodies, and ubiquitination. Finally, enhanced ATP production promoted by methyl pyruvate (MP) treatment rescued proteasome impairment and TDP-43 extra-nuclear localization caused by σ1RE102Q overexpression.

Conclusions

Our observations suggest that neurodegeneration seen in some forms of ALS are due in part to aberrant mitochondrial ATP production and proteasome activity as well as TDP-43 mislocalization resulting from the SIGMAR1 mutation.

General significance

ATP supplementation by MP represents a potential therapeutic strategy to treat ALS caused by SIGMAR1 mutation.  相似文献   

12.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

13.
K28 is a viral A/B toxin that traverses eukaryotic cells by endocytosis and retrograde transport through the secretory pathway. Here we show that toxin retrotranslocation from the endoplasmic reticulum (ER) requires Kar2p/BiP, Pdi1p, Scj1p, Jem1p, and proper maintenance of Ca(2+) homeostasis. Neither cytosolic chaperones nor Cdc48p/Ufd1p/Npl4p complex components or proteasome activity are required for ER exit, indicating that K28 retrotranslocation is mechanistically different from classical ER-associated protein degradation (ERAD). We demonstrate that K28 exits the ER in a heterodimeric but unfolded conformation and dissociates into its subunits as it emerges into the cytosol where beta is ubiquitinated and degraded. ER export and in vivo toxicity were not affected in a lysine-free K28 variant nor under conditions when ubiquitination and proteasome activity was blocked. In contrast, toxin uptake from the plasma membrane required Ubc4p (E2) and Rsp5p (E3) and intoxicated ubc4 and rsp5 mutants accumulate K28 at the cell surface incapable of toxin internalization. We propose a model in which ubiquitination is involved in the endocytic pathway of the toxin, while ER-to-cytosol retrotranslocation is independent of ubiquitination, ERAD and proteasome activity.  相似文献   

14.
Protein degradation by the ubiquitin-proteasome system is necessary for a normal cell cycle. As compared with knowledge of the mechanism in animals and yeast, that in plants is less known. Here we summarize research into the regulatory mechanism of protein degradation in the cell cycle in plants. Anaphase-promoting complex/cyclosome (APC), in the E3 family of enzymes, plays an important role in maintaining normal mitosis. APC activation and substrate specificity is determined by its activators, which can recognize the destruction box (D-box) in APC target proteins. Oryza sativa root architecture-associated I (OsRAA1) with GTP-binding activity was originally cloned from rice. Overexpression of of OsRAA1 inhibits the growth of primary roots in rice. Knockdown lines showed reduced height of seedlings because of abnormal cell division. OsRAA1 transgenic rice and fission yeast show a higher proportion of metaphase cells than that of controls, which suggests a blocked transition from metaphase to anaphase during mitosis. OsRAA1 co-localizes with spindle tubulin. It contains the D-box motif and interacts with OsRPT4 of the regulatory particle of 26S proteasome. OsRAA1 may be a cell cycle inhibitor that can be degraded by the ubiquitin-proteasome system, and its disruption is necessary for the transition from metaphase to anaphase during root growth in rice.Key words: cell cycle, APC, RAA1, rice, protein degradationProtein degradation by the ubiquitin-proteasome system is necessary for the normal cell cycle. The activation of 3 enzymes, E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme) and E3 (ubiquitin ligase), are required for the addition of ubiquitin molecules to the target protein. E1 catalyzes the formation of the thiol-ester bond between C-terminal glycine in ubiquitin and cysteine in E1, and activated ubiquitin is transferred to a cysteine in E2. With the help of an E3, ubiquitin is linked to the lysine in the target protein. Subsequent ubiquitins can be attached to the previously bound ubiquitin because of the seven lysine residues in the ubiquitin molecule. Finally, the ubiquitinated substrates are degraded by the 26S proteasome.E3 confers substrate specificity. E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes. E3s are of two classes: homology to E6-AP carboxy terminus-containing proteins, and RING-finger domain-containing proteins. The RING-finger E3s have 4 subgroups: single subunit RING E3, VCB-Cul2 complex (VBC), Skp1/Cullin/F-box protein (SCF) and anaphase-promoting complex/cyclosome (APC/C).1 The SCF ligases regulate the transition from G1/S and G2/M, and APC is required for mitosis. Many APC substrates have been identified in animals.2 The polyubiquitinated substrates can be recognized by different ubiquitin receptors and degraded via 26S proteasome.3,4 However, little is known about APC substrates in plants.  相似文献   

15.
The ubiquitin-proteasome pathway (UPP) is the primary cytosolic proteolytic machinery for the selective degradation of various forms of damaged proteins. Thus, the UPP is an important protein quality control mechanism. In the canonical UPP, both ubiquitin and the 26S proteasome are involved. Substrate proteins of the canonical UPP are first tagged by multiple ubiquitin molecules and then degraded by the 26S proteasome. However, in noncanonical UPP, proteins can be degraded by the 26S or the 20S proteasome without being ubiquitinated. It is clear that a proteasome is responsible for selective degradation of oxidized proteins, but the extent to which ubiquitination is involved in this process remains a subject of debate. Whereas many publications suggest that the 20S proteasome degrades oxidized proteins independent of ubiquitin, there is also solid evidence indicating that ubiquitin and ubiquitination are involved in degradation of some forms of oxidized proteins. A fully functional UPP is required for cells to cope with oxidative stress and the activity of the UPP is also modulated by cellular redox status. Mild or transient oxidative stress up-regulates the ubiquitination system and proteasome activity in cells and tissues and transiently enhances intracellular proteolysis. Severe or sustained oxidative stress impairs the function of the UPP and decreases intracellular proteolysis. Both the ubiquitin-conjugating enzymes and the proteasome can be inactivated by sustained oxidative stress, especially the 26S proteasome. Differential susceptibilities of the ubiquitin-conjugating enzymes and the 26S proteasome to oxidative damage lead to an accumulation of ubiquitin conjugates in cells in response to mild oxidative stress. Thus, increased levels of ubiquitin conjugates in cells seem to be an indicator of mild oxidative stress.  相似文献   

16.
The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25 kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.  相似文献   

17.
In an experimental model of liver cirrhosis, marked increases in ER proteasome content in rat livers were observed 5 h after acute i.p. injection of the hepatotoxicant CCl4. To confirm the role of CYP2E1 in mediating protein misfolding/damage in the ER via its metabolism of CCl4, 293T cells stably transfected with human CYP2E1 were exposed to CCl4 and cell ER fractions assessed for ubiquitination. Increases in ER ubiquitin conjugates were noted in CYP2E1/293T cells treated with CCl4 and not in controls, suggesting these effects are CYP2E1 specific. Finally, the role of CYP2E1 in ER homeostasis was investigated by examining the unfolded protein response (UPR). When exposed to CCl4, CYP2E1/293T cells but not 293T or CYP1A2/293T cells showed rapid induction of the UPR-inducible ER chaperone BiP. Collectively, the data presented suggest that CYP2E1 is capable of inducing significant ER protein damage and stress via its catalytic activation of pro-oxidants.  相似文献   

18.
Abstract

Hydrogen sulfide (H2S) shows antioxidative, anti-inflammatory, antiapoptotic, and cytoprotective effects in kidneys. Recently, H2S has been reported to alleviate uranium-induced rat nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways. Here, the protective effect and molecular mechanism of H2S on uranium-induced apoptosis were examined in normal rat kidney proximal cells (NRK-52E) in vitro. The results indicate that NaHS (an H2S donor) administration in uranium-intoxicated kidney cells ameliorated uranium-induced reactive oxygen species generation, caspase-3-dependent apoptosis, and endoplasmic reticulum (ER) stress identified through several key markers including GRP78, C/EBP homologous protein (CHOP), and caspase-12. NaHS treatment in uranium-intoxicated kidney cells abolished the effects of uranium on Akt phosphorylation, GSK-3β activation, increased Fyn nuclear expression, and concomitantly decreased Nrf2 nuclear expression. NaHS administration in uranium-treated kidney cells resorted uranium-decreased the expression of two key subunit PSMA6 and PSMB7 in 20S proteasome. But, DRB (an Nrf2 inhibitor) administration abrogated the effects of NaHS on PSMA6 and PSMB7 expression in uranium-contaminated kidney cells. Bortezomib (a proteasome inhibitor) treatment in NaHS pulsing uranium cotreated kidney cells reversed the effects of NaHS on not only PSMA6 and PSMB7 but also GRP78 and CHOP. Taken together, all data suggest that H2S can attenuate uranium-induced kidney cell apoptosis mediated by ER stress via 20S proteasome involving in Akt/GSK-3β/Fyn-Nrf2 signaling axis.  相似文献   

19.
20.
Endoplasmic reticulum (ER) stress and ER stress-associated unfolded protein response (UPR) can promote cancer cell survival, but it remains unclear whether they can influence oncogene-induced senescence. The present study examined the role of ER stress in senescence using oncogene-dependent models. Increased ER stress attenuated senescence in part by up-regulating phosphorylated protein kinase B (p-AKT) and decreasing phosphorylated extracellular signal-regulated kinase (p-ERK). A positive feed forward loop between p-AKT, ER stress, and UPR was discovered whereby a transient increase of ER stress caused reduced senescence and promotion of tumorigenesis. Decreased ER stress was further correlated with increased senescence in both mouse and human tumors. Interestingly, H-RAS-expressing Pparβ/δ null cells and tumors having increased cell proliferation exhibited enhanced ER stress, decreased cellular senescence, and/or enhanced tumorigenicity. Collectively, these results demonstrate a new role for ER stress and UPR that attenuates H-RAS-induced senescence and suggest that PPARβ/δ can repress this oncogene-induced ER stress to promote senescence in accordance with its role as a tumor modifier that suppresses carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号