首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了研磨法、超声波法、酸溶辅助超声波法和菌体浓度对类球红细菌类胡萝卜素抗氧化活性的影响。结果表明,不同提取方法和固液比条件下,类球红细菌类胡萝卜素均具有清除DPPH自由基能力、抗脂质过氧化能力和还原能力。酸溶辅助超声波法提取的类胡萝卜素产率最高、抗氧化活性最好。类球红细菌类胡萝卜素具有一定的抗氧化活性,其抗氧化活性随菌体浓度的增加而增加。  相似文献   

2.
Antioxidant activity of carotenoids   总被引:3,自引:0,他引:3  
Carotenoids are pigments which play a major role in the protection of plants against photooxidative processes. They are efficient antioxidants scavenging singlet molecular oxygen and peroxyl radicals. In the human organism, carotenoids are part of the antioxidant defense system. They interact synergistically with other antioxidants; mixtures of carotenoids are more effective than single compounds. According to their structure most carotenoids exhibit absorption maxima at around 450 nm. Filtering of blue light has been proposed as a mechanism protecting the macula lutea against photooxidative damage. There is increasing evidence from human studies that carotenoids protect the skin against photooxidative damage.  相似文献   

3.
Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.  相似文献   

4.
In birds, experimentally increased egg production can reduce maternal condition, parenting ability and survival, and the quality of the eggs themselves. Such costs probably reflect resource limitation, but the identity of the resource(s) in question remains unclear. Carotenoids are antioxidants and immunomodulants that birds can only obtain in their diet. Trade-offs in the allocation of limiting carotenoids between somatic maintenance and egg production could therefore be an important factor underlying reproductive costs. We show that in wild lesser black-backed gulls, Larus fuscus, dietary carotenoid availability (i) constrained the capacity to re-lay following clutch removal; and (ii) affected the relationship between yolk mass and egg mass. However, whether carotenoids are limiting for egg production directly, by stimulating the synthesis or antioxidant protection of yolk precursors, or indirectly via effects on maternal health, requires further study.  相似文献   

5.
天然类胡萝卜素生物合成与生物技术应用   总被引:10,自引:0,他引:10  
类胡萝卜素是重要天然食用色素族群之一,它不仅可为食品添色,还具有较高营养保健价值。类胡萝卜素广泛存在于高等植物、藻类、少数微生物和部分动物体内,但不同生物在合成途径细节及所积累的类胡萝卜素种类方面存在较大的差异。通过优化培养条件、转基因和水解酶辅助提取等生物技术手段提高了类胡萝卜素产量,降低了生产成本,从而使天然类胡萝卜素制品得到更广泛的应用。  相似文献   

6.
类胡萝卜素的抗癌作用与基因表达的联系   总被引:5,自引:0,他引:5  
类胡萝卜素是通过干扰癌细胞生长或细胞死亡的有关途径显示其抗癌作用的,包括细胞增殖、生长因子的信号传输、细胞间隙连接通讯、细胞分化及凋亡。类胡萝卜素引起参与这些过程的调节蛋白质表达发生改变。已发现几个转录系统在其抗癌活性中起作用,如类视黄素受体、过氧化物酶体激活受体(PPAR)、抗氧化剂应答元件(ARE)、异生素受体及激活剂蛋白-1(AP-1),它们构成各种类胡萝卜素与其它微量营养素协同抗癌作用的基础。  相似文献   

7.
Carotenoids are among the best known antioxidant phytochemicals, and are widely believed to contribute to the health-promoting properties of fruits and vegetables. Investigations of the effects of carotenoids have been carried out at different levels: in cultured cells, in experimental animals, and in humans. Studying reports from the last 5 years, we find a clear distinction between effects of vitamin A and pro-vitamin A carotenoids (the carotenes and β-cryptoxanthin), and effects of non-vitamin A carotenoids (lycopene, lutein, astaxanthin and zeaxanthin). Whereas the latter group are almost invariably reported to protect against DNA damage, whether endogenous or induced by exogenous agents, the provitamin A carotenoids show a more varied spectrum of effects, sometimes protecting and sometimes enhancing DNA damage. The tendency to exacerbate damage is seen mainly at high concentrations, and might be accounted for by pro-oxidant actions of these carotenoids.  相似文献   

8.
Consumption of carotenoids is associated with an enhanced immune response and protection against neoplasia and atherosclerosis. Because these effects have been achieved using carotenoids with no pro-vitamin A activity, they are assumed to be due to the antioxidant properties of carotenoids. Carotenoids protect against photosensitized oxidation by quenching singlet oxygen. In addition, beta-carotene reacts chemically with peroxyl radicals to produce epoxide and apocarotenal products. To investigate the potential significance of these reactions to biological systems, we have used soybean lipoxygenase to generate peroxyl radical enzymatically. beta-Carotene inhibits the oxidation of linoleic acid by soybean lipoxygenase as well as the formation of the hydroperoxide product. In addition, the absorption of beta-carotene is diminished (bleached) by soybean lipoxygenase. The potential significance of these antioxidant reactions of carotenoids to biological function is discussed.  相似文献   

9.
The skin is shielding our organism from exogenous threats including solar radiation. Carotenoids which are ingested with the diet accumulate in the skin with the highest levels occurring in skin of the forehead and in the palms of the hands. Blood and skin levels of carotenoids increase during supplementation and due to their antioxidant properties and UV-absorbing effects carotenoids are used as photoprotective agents. Systemic photoprotection with carotenoids after supplementation or ingestion of a carotenoid rich diet has been demonstrated in several human intervention studies. Although protection is only moderate it may contribute to UV protection in combination with other measures. Beyond photoprotection, ingestion of carotenoids has been postulated to be of additional benefit for cutaneous tissue and influences moisture and texture or elasticity of the skin. However, only a limited number of studies is available yet to substantiate such a claim.  相似文献   

10.
Mechanisms of genomic and non-genomic actions of carotenoids   总被引:1,自引:0,他引:1  
Carotenoids are highly bioactive dietary compounds that have the potential to have significant effects on human health. It is becoming increasingly clear that the various biological effects that carotenoids exert could be driven via a number of different mechanisms. These include direct pro- and antioxidant effects, redox sensitive cell signalling, vitamin A signalling pathways and other as yet unidentified mechanisms. This article provides an overview of the known effects of carotenoids and discusses the use of model systems and functional genomic approaches further to elucidate their modes of action.  相似文献   

11.
Carotenoids represent a large group of mainly red, orange, and yellow natural metabolites mainly involved in regulation of many metabolic processes. Carotenoids are beneficial for human health. Current study describes the importance, chemical composition and functioning of carotenoids. It is well known that carotenoids support pigments acting in light absorbance mechanisms during photosynthesis, and are known to protect the chlorophyll molecules from oxidative stress and reactive oxygen species (ROS) damage. Carotenoids are involved in signaling processes in plants, responses to environmental stresses, pollination, germination and reproduction, and development regulation. As nutrients of strong antioxidant activity that is primarily linked to their polyene molecular structure, the carotenoids are reported as immune-enhancement and anticancer agents, which are also involved in prevention of eye-, gastric and neurocognitive disorders, and in regulation of obesity and anti-ageing. Concerning the wide prospective applications of carotenoids as pharmaceuticals and nutraceuticals, there are some critical aspects associated with carotenoids’ bioavailability and challenges in their bioengineering. This mostly refers to the needs for identification and cloning of genes responsible for carotenoid biosynthesis and transformation and related development of transgenic carotenoid-rich crops. In the recent years, technologies of micro- and nanoencapsulation have addressed the needs of carotenoid entrapping to enhance their bioavailability, solubility and chemical stability, and to ensure the target delivery and manifestation of their strong antioxidant and other biological activity. Among standard and some advanced analytic tools for carotenoid determination (e.g., High performance liquid chromatography-HPLC, Liquid chromatography–mass spectrometry-LC-MS, Ultra high performance liquid chromatography-UHPLC, High-performance thin-layer chromatography-HPTLC and others), the vibrational spectroscopy techniques, primarily Raman spectroscopy coupled with chemometric modeling, opened a new era in carotenoid research and application.  相似文献   

12.
Carotenoids are ubiquitous pigments synthesized by plants, fungi, algae, and bacteria. Industrially, carotenoids are used in pharmaceuticals, neutraceuticals, and animal feed additives, as well as colorants in cosmetics and foods. Scientific interest in dietary carotenoids has increased in recent years because of their beneficial effects on human health, such as lowering the risk of cancer and enhancement of immune system function, which are attributed to their antioxidant potential. The availability of carotenoid genes from carotenogenic microbes has made possible the synthesis of carotenoids in non-carotenogenic microbes. The increasing interest in microbial sources of carotenoid is related to consumer preferences for natural additives and the potential cost effectiveness of creating carotenoids via microbial biotechnology. In this review, we will describe the recent progress made in metabolic engineering of non-carotenogenic microorganisms with particular focus on the potential of Escherichia coli for improved carotenoid productivity. Amitabha Das and Sang-Hwal Yoon contributed equally to this work.  相似文献   

13.
类胡萝卜素具有重要的生物学功能,尤其对人体健康有着更重要的作用,近年来一直是研究的热点。综述了类胡萝卜素生物合成途径及相关基因的分离,以及运用这些基因提高微生物和植物中类胡萝卜素含量的遗传工程研究进展。  相似文献   

14.
《Phytochemistry》1987,26(4):961-965
Carotenoids and total neutral lipids from thylakoids of Nerium oleander were evaluated as antioxidants in liposomes prepared from soybean polar lipids. The extent of lipid oxidation was assessed from the formation of malondialdehyde and conjugated dienes after exposure of the liposomes to free radicals generated by 60Co gamma radiolysis. The carotenoids incorporated into the bilayers were isolated from clones of oleander grown at 20° or 45°, growth conditions which are known to result in a difference in the thermal properties of the membrane lipids. The effect of carotenoids on the temperature of the phase transition of thylakoid polar lipids was also examined. The results showed that, in comparison with the effectiveness of a reference antioxidant, α-tocopherol, the carotenoids and total neutral lipids from thylakoids of oleander did not protect the soybean polar lipids from oxidation, nor did they influence the temperature of the phase transition of thylakoid polar lipids.  相似文献   

15.
Carotenoids are biologically active pigments, which are important for animals due to their dual role in health maintenance and ornamental signalling. In adult birds, immunostimulatory properties of carotenoids have been repeatedly demonstrated while much less is known about the importance of carotenoids as antioxidants. We studied the relationships between plasma carotenoid levels, as well as total antioxidant protection, and various hemato-serological health state indices in female great tits (Parus major L.), incubating their second clutches in two contrasting (coniferous and deciduous) habitats in southwest Estonia. To manipulate reproductive effort, four eggs were removed from half of the clutches during laying to stimulate females to lay additional eggs. However, egg removal had no effect on the final number of eggs laid. Plasma carotenoid levels increased seasonally in parallel with caterpillar food availability. However, no between-habitat differences in carotenoid levels, total antioxidant capacity, or indices of health state could be found despite the apparently better feeding conditions in the coniferous habitat. No correlation was detected between plasma carotenoid levels and measures of total antioxidant capacity, which suggests that at least for the adult birds feeding on naturally carotenoid-rich diet, antioxidant function of carotenoids is not of primary importance. A strong non-linear association between the measures of antioxidant protection and leukocytic markers of inflammation was found, which suggests that measures of total antioxidant capacity deserve further attention in ecophysiological studies as potential indicators of immunopathology.  相似文献   

16.
Carotenoids are responsible for much of the yellow, orange and red pigmentation in the animal kingdom, and the importance of such coloration as an honest signal of individual quality has received widespread attention. In particular, owing to the multiple roles of carotenoids as pigments, antioxidants and immunostimulants, carotenoid-based coloration has been suggested to advertise an individual's antioxidant or immune defence capacity. However, it has recently been argued that carotenoid-based signals may in fact be advertising the availability of different antioxidants, many of which (including various vitamins, antioxidant enzymes and minerals) are colourless and so would be uninformative as components of a visual signal, yet often have greater biological activity than carotenoids. We tested this hypothesis by feeding male sticklebacks (Gasterosteus aculeatus) a diet containing a fixed level of carotenoids and either low or high, but biologically realistic levels of the colourless antioxidant vitamins C and E. High-antioxidant diet males produced significantly more intensely coloured (but not larger) carotenoid-based regions of nuptial coloration and were preferred over size-matched males of the opposite diet treatment in mate-choice trials. Furthermore, there were positive correlations between an individual's somatic antioxidant activity and signal intensity. Our data suggest that carotenoid-based ornaments may honestly signal an individual's availability of non-carotenoid antioxidants, allowing females to make adaptive mate-choice decisions.  相似文献   

17.
Carotenoids are a class of naturally occurring pigment, carrying out important biological functions in photosynthesis and involved in environmental responses including nutrition in organisms. Saproxanthin and myxol, which have monocyclic carotenoids with a γ-carotene skeleton, have been reported to show a stronger antioxidant activity than those with β-carotene and zeaxanthin. In this research, a yellow-orange bacterium of strain 11shimoA1 (JCM19538) was isolated from a seaweed collected at Nabeta Bay (Shizuoka, Japan). The 16S rRNA gene sequence of strain 11shimoA1 revealed more than 99.99 % similarity with those of Jejuia pallidilutea strains in the family Flavobacteriaceae. Strain 11shimoA1 synthesized two types of carotenoids. One of them was (3R, 3’R)-zeaxanthin with dicyclic structure and another was identified as (3R, 2’S)-2′-isopentenylsaproxanthin, a novel monocyclic carotenoid with pentenyl residue at C-2′ position of saproxanthin, using FAB-MS, 1H NMR, and CD analyses. Culturing strain 11shimoA1 in an alkaline medium at pH 9.2 resulted in a markedly increased in production of 2′-isopentenylsaproxanthin per dry cell weight, but a decreased in zeaxanthin production as compared to their respective production levels in medium with pH 7.0. These carotenoids are likely to play some roles in the adaptation of the bacterium to the environmental conditions.  相似文献   

18.
Carotenoids of 47 species of insects belonging to Hemiptera, including 16 species of Sternorrhyncha (aphids and a whitefly), 11 species of Auchenorrhyncha (planthoppers, leafhoppers, and cicadas), and 20 species of Heteroptera (stink bugs, assassin bugs, water striders, water scorpions, water bugs, and backswimmers), were investigated from the viewpoints of chemo-systematic and chemical ecology. In aphids, carotenoids belonging to the torulene biosynthetic pathway such as β-zeacarotene, β,ψ-carotene, and torulene, and carotenoids with a γ-end group such as β,γ-carotene and γ,γ-carotene were identified. Carotenoids belonging the torulene biosynthetic pathway and with a γ-end group were also present in water striders. On the other hand, β-carotene, β-cryptoxanthin, and lutein, which originated from dietary plants, were present in both stink bugs and leafhoppers. Assassin bugs also accumulated carotenoids from dietary insects. Trace amounts of carotenoids were detected in cicadas. Carotenoids of insects belonging to Hemiptera well-reflect their ecological life histories.  相似文献   

19.
Carotenoids first emerged in archaebacteria as lipids reinforcing cell membranes. To serve this function their long molecules have extremely rigid backbone due to the linear chain of usually 10 to 11 conjugated C=C bonds in transconfiguration--the length corresponding the thickness of hydrophobic zone of membrane which they penetrate as "molecular rivets". Carotenoids retain their membrane-reinforcing function in some fungi and animals. The general structure of carotenoid molecule, originally having evolved for mechanical functions in membranes, possess a number of other properties that were later used for independent functions. The most striking fact is that these properties proved to fit some new functions to perfection. The polyene chain of 9-11 double bonds absorbs light precisely in the gap of chlorophyll absorption--function as accessory light-harvesting pigments in all plants; Unique arrangement of electronic levels owing to the by polyene chain structure makes carotenoids the only natural compounds capable of excitation energy transfer both (i) from carotenoid excited state to chlorophyll in the light-harvesting complex and (ii) from triplet chlorophyll or singlet oxygen to carotenoid in photosynthetic reaction centers--protection of RC from photodamage. The linear system of conjugated C=C bonds provides high reducing potential of carotenoid molecules making them potent antioxidants in lipid formations. Still, there is a lack of evidence of the chemical antioxidant function of carotenoids, especially in higher organisms; most data demonstrate an antioxidant ability rather than a function. Carotenoids have many other independent biological functions, including: specific coloration patterns in plants and animals, screening from excessive light and spectral filtering, defense of egg proteins from proteases in some invertebrates; the direct carotenoid derivative--retinal--acts as visual pigment in all animals and as chromophore in bacteriorhodopsin photosynthesis, retinoic acid in animals and abscisic acid in plants serve as hormones. All these functions utilize various properties (mechanical, electronic, stereospecific) of a single structure evolved in bacteria for a single membrane-reinforcing function, thus demonstrating an example of pure evolutionary preadaptation. One of the practical conclusions that can be reached by reviewing uniquely diverse properties and functions of carotenoids is that, when considering possible mechanisms of their effects in organisms (e.g., anticarcinogenic action), all their functional traits should be taken into account.  相似文献   

20.
Carotenoids are plant pigments, some of which act as a vital source of vitamin A to all animals, that appear to have additional benefits to primates. They are potent antioxidants and photoprotectants and can additionally modulate gene activity resulting in protection from experimentally-induced inflammatory damage and neoplastic transformation. Anti-neoplastic properties appear tightly correlated to their ability to induce the gap junctional protein connexin 43 (Cx43). This when upregulated leads to decreased proliferation and decreased indices of neoplasia in animal and human cells. Delivery of natural carotenoids can be compromised by poor bioavailability. To overcome this, a synthetic water-dispersible derivative of astaxanthin has been synthesized and shown to be: highly bioavailable; a potent antioxidant; protective against experimental ischemia-reperfusion injury and capable of inducing Cx43, suggesting antineoplastic potential. The ability to deliver biologically active carotenoids at high concentration and with good reproducibility appears to have been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号