共查询到20条相似文献,搜索用时 15 毫秒
1.
Samuel B. Fey David A. Vasseur Karla Alujevi Kristy J. Kroeker Michael L. Logan Mary I. O'Connor Volker H. W. Rudolf John P. DeLong Scott Peacor Rebecca L. Selden Andy Sih Susana Clusella‐Trullas 《Global Change Biology》2019,25(9):3110-3120
Laboratory measurements of physiological and demographic tolerances are important in understanding the impact of climate change on species diversity; however, it has been recognized that forecasts based solely on these laboratory estimates overestimate risk by omitting the capacity for species to utilize microclimatic variation via behavioral adjustments in activity patterns or habitat choice. The complex, and often context‐dependent nature, of microclimate utilization has been an impediment to the advancement of general predictive models. Here, we overcome this impediment and estimate the potential impact of warming on the fitness of ectotherms using a benefit/cost trade‐off derived from the simple and broadly documented thermal performance curve and a generalized cost function. Our framework reveals that, for certain environments, the cost of behavioral thermoregulation can be reduced as warming occurs, enabling behavioral buffering (e.g., the capacity for behavior to ameliorate detrimental impacts) and “behavioral rescue” from extinction in extreme cases. By applying our framework to operative temperature and physiological data collected at an extremely fine spatial scale in an African lizard, we show that new behavioral opportunities may emerge. Finally, we explore large‐scale geographic differences in the impact of behavior on climate‐impact projections using a global dataset of 38 insect species. These multiple lines of inference indicate that understanding the existing relationship between thermal characteristics (e.g., spatial configuration, spatial heterogeneity, and modal temperature) is essential for improving estimates of extinction risk. 相似文献
2.
Rapid environmental changes are putting numerous species at risk of extinction. For migration-limited species, persistence depends on either phenotypic plasticity or evolutionary adaptation (evolutionary rescue). Current theory on evolutionary rescue typically assumes linear environmental change. Yet accelerating environmental change may pose a bigger threat. Here, we present a model of a species encountering an environment with accelerating or decelerating change, to which it can adapt through evolution or phenotypic plasticity (within-generational or transgenerational). We show that unless either form of plasticity is sufficiently strong or adaptive genetic variation is sufficiently plentiful, accelerating or decelerating environmental change increases extinction risk compared to linear environmental change for the same mean rate of environmental change. 相似文献
3.
The ubiquity of global change and its impacts on biodiversity poses a clear and urgent challenge for evolutionary biologists. In many cases, environmental change is so widespread and rapid that individuals can neither accommodate to them physiologically nor migrate to a more favourable site. Extinction will ensue unless the population adapts fast enough to counter the rate of decline. According to theory, whether populations can be rescued by evolution depends upon several crucial variables: population size, the supply of genetic variation, and the degree of maladaptation to the new environment. Using techniques in experimental evolution we tested the conditions for evolutionary rescue (ER). Hundreds of yeast populations were exposed to normally lethal concentrations of salt in conditions, where the frequency of rescue mutations was estimated and population size was manipulated. In a striking match with theory, we show that ER is possible, and that the recovery of the population may occur within 25 generations. We observed a clear threshold in population size for ER whereby the ancestral population size must be sufficiently large to counter stochastic extinction and contain resistant individuals. These results demonstrate that rapid evolution is an important component of the response of small populations to environmental change. 相似文献
4.
Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue. 相似文献
5.
6.
7.
Gil J. B. Henriques Matthew M. Osmond 《Evolution; international journal of organic evolution》2020,74(7):1255-1273
The adaptation of populations to changing conditions may be affected by interactions between individuals. For example, when cooperative interactions increase fecundity, they may allow populations to maintain high densities and thus keep track of moving environmental optima. Simultaneously, changes in population density alter the marginal benefits of cooperative investments, creating a feedback loop between population dynamics and the evolution of cooperation. Here we model how the evolution of cooperation interacts with adaptation to changing environments. We hypothesize that environmental change lowers population size and thus promotes the evolution of cooperation, and that this, in turn, helps the population keep up with the moving optimum. However, we find that the evolution of cooperation can have qualitatively different effects, depending on which fitness component is reduced by the costs of cooperation. If the costs decrease fecundity, cooperation indeed speeds adaptation by increasing population density; if, in contrast, the costs decrease viability, cooperation may instead slow adaptation by lowering the effective population size, leading to evolutionary suicide. Thus, cooperation can either promote or—counterintuitively—hinder adaptation to a changing environment. Finally, we show that our model can also be generalized to other social interactions by discussing the evolution of competition during environmental change. 相似文献
8.
Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress
Andrew Gonzalez Graham Bell 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1610)
Whether evolution will be rapid enough to rescue declining populations will depend upon population size, the supply of genetic variation, the degree of maladaptation and the historical direction of selection. We examined whether the level of environmental stress experienced by a population prior to abrupt environmental change affects the probability of evolutionary rescue (ER). Hundreds of populations of two species of yeast, Saccharomyces cerevisiae and Saccharomyces paradoxus were exposed to a range of sublethal concentrations of salt for approximately a hundred generations before transfer to a concentration of salt lethal to the ancestor (150 g l–1 NaCl). The fitness of surviving populations of both species was a quadratic function of yield: fitness was greatest for large populations that had been selected on low salt concentrations (less than 20 g l−1 NaCl) and small populations that had adapted to high salt (more than 80 g l−1 NaCl). However, differences occurred between species in the probability of ER. The frequency of ER was positively correlated with salt concentration for S. cerevisiae, but negatively correlated with salt concentration in S. paradoxus. These results not only demonstrate that past environmental conditions can determine the probability of ER after abrupt environmental change, but also suggest that there may even be differences between closely related species that are worth further exploration. 相似文献
9.
Stefan Lambert Jean-Claude Lozano François-Yves Bouget Pierre E. Galand 《Environmental microbiology》2021,23(5):2592-2604
Marine picoplankton contribute to global carbon sequestration and nutrient recycling. These processes are directly related to the composition of communities, which in turn depends on microbial interactions and environmental forcing. Under regular seasonal cycles, marine communities show strong predictable patterns of annual re-occurrences, but little is known about the effect of environmental perturbation on their organization. The aim of our study was to investigate the co-occurrence patterns of planktonic picoeukaryote, bacteria and archaea under contrasting environmental conditions. The study was designed to have high sampling frequency that could match both the biological rhythm of marine microbes and the short time scale of extreme weather events. Our results show that microbial networks changed from year to year depending on conditions. In addition, individual taxa became less interconnected and changed neighbours, which revealed an unfaithful relationship between marine microorganisms. This unexpected pattern suggests possible switches between organisms that have similar specific functions, or hints at the presence of organisms that share similar environmental niches without interacting. Despite the observed annual changes, the time series showed re-occurring communities that appear to recover from perturbations. Changing co-occurrence patterns between marine microorganisms may allow the long-term stability of ecosystems exposed to contrasting meteorological events. 相似文献
10.
Kristy J. Kroeker Lauren E. Bell Emily M. Donham Umihiko Hoshijima Sarah Lummis Jason A. Toy Ellen Willis‐Norton 《Global Change Biology》2020,26(1):54-67
The environmental conditions in the ocean have long been considered relatively more stable through time compared to the conditions on land. Advances in sensing technologies, however, are increasingly revealing substantial fluctuations in abiotic factors over ecologically and evolutionarily relevant timescales in the ocean, leading to a growing recognition of the dynamism of the marine environment as well as new questions about how this dynamism may influence species' vulnerability to global environmental change. In some instances, the diurnal or seasonal variability in major environmental change drivers, such as temperature, pH and seawater carbonate chemistry, and dissolved oxygen, can exceed the changes expected with continued anthropogenic global change. While ocean global change biologists have begun to experimentally test how variability in environmental conditions mediates species' responses to changes in the mean, the extensive literature on species' adaptations to temporal variability in their environment and the implications of this variability for their evolutionary responses has not been well integrated into the field. Here, we review the physiological mechanisms underlying species' responses to changes in temperature, pCO2/pH (and other carbonate parameters), and dissolved oxygen, and discuss what is known about behavioral, plastic, and evolutionary strategies for dealing with variable environments. In addition, we discuss how exposure to variability may influence species' responses to changes in the mean conditions and highlight key research needs for ocean global change biology. 相似文献
11.
Hugh M Burley Karel Mokany Simon Ferrier Shawn W Laffan Kristen J Williams Tom D Harwood 《Ecology and evolution》2016,6(8):2579-2593
Conserving different spatial and temporal dimensions of biological diversity is considered necessary for maintaining ecosystem functions under predicted global change scenarios. Recent work has shifted the focus from spatially local (α‐diversity) to macroecological scales (β‐ and γ‐diversity), emphasizing links between macroecological biodiversity and ecosystem functions (MB–EF relationships). However, before the outcomes of MB–EF analyses can be useful to real‐world decisions, empirical modeling needs to be developed for natural ecosystems, incorporating a broader range of data inputs, environmental change scenarios, underlying mechanisms, and predictions. We outline the key conceptual and technical challenges currently faced in developing such models and in testing and calibrating the relationships assumed in these models using data from real ecosystems. These challenges are explored in relation to two potential MB–EF mechanisms: “macroecological complementarity” and “spatiotemporal compensation.” Several regions have been sufficiently well studied over space and time to robustly test these mechanisms by combining cutting‐edge spatiotemporal methods with remotely sensed data, including plant community data sets in Australia, Europe, and North America. Assessing empirical MB–EF relationships at broad spatiotemporal scales will be crucial in ensuring these macroecological processes can be adequately considered in the management of biodiversity and ecosystem functions under global change. 相似文献
12.
Martin Lindegren Christian M?llmann Anders Nielsen Keith Brander Brian R. MacKenzie Nils Chr. Stenseth 《Proceedings. Biological sciences / The Royal Society》2010,277(1691):2121-2130
Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how exploitation would have to be adjusted in order to achieve sustainable management under different climate scenarios. 相似文献
13.
Population persistence has been studied in a conservation context to predict the fate of small or declining populations. Persistence models have explored effects on extinction of random demographic and environmental fluctuations, but in the face of directional environmental change they should also integrate factors affecting whether a population can adapt. Here, we examine the population‐size dependence of demographic and genetic factors and their likely contributions to extinction time under scenarios of environmental change. Parameter estimates were derived from experimental populations of the rainforest species, Drosophila birchii, held in the lab for 10 generations at census sizes of 20, 100 and 1000, and later exposed to five generations of heat‐knockdown selection. Under a model of directional change in the thermal environment, rapid extinction of populations of size 20 was caused by a combination of low growth rate (r) and high stochasticity in r. Populations of 100 had significantly higher reproductive output, lower stochasticity in r and more additive genetic variance (VA) than populations of 20, but they were predicted to persist less well than the largest size class. Even populations of 1000 persisted only a few hundred generations under realistic estimates of environmental change because of low VA for heat‐knockdown resistance. The experimental results document population‐size dependence of demographic and adaptability factors. The simulations illustrate a threshold influence of demographic factors on population persistence, while genetic variance has a more elastic impact on persistence under environmental change. 相似文献
14.
15.
Operationalizing resilience for adaptive coral reef management under global environmental change 下载免费PDF全文
Kenneth R.N. Anthony Paul A. Marshall Ameer Abdulla Roger Beeden Chris Bergh Ryan Black C. Mark Eakin Edward T. Game Margaret Gooch Nicholas A.J. Graham Alison Green Scott F. Heron Ruben van Hooidonk Cheryl Knowland Sangeeta Mangubhai Nadine Marshall Jeffrey A. Maynard Peter McGinnity Elizabeth McLeod Peter. J. Mumby Magnus Nyström David Obura Jamie Oliver Hugh P. Possingham Robert L. Pressey Gwilym P. Rowlands Jerker Tamelander David Wachenfeld Stephanie Wear 《Global Change Biology》2015,21(1):48-61
Cumulative pressures from global climate and ocean change combined with multiple regional and local‐scale stressors pose fundamental challenges to coral reef managers worldwide. Understanding how cumulative stressors affect coral reef vulnerability is critical for successful reef conservation now and in the future. In this review, we present the case that strategically managing for increased ecological resilience (capacity for stress resistance and recovery) can reduce coral reef vulnerability (risk of net decline) up to a point. Specifically, we propose an operational framework for identifying effective management levers to enhance resilience and support management decisions that reduce reef vulnerability. Building on a system understanding of biological and ecological processes that drive resilience of coral reefs in different environmental and socio‐economic settings, we present an Adaptive Resilience‐Based management (ARBM) framework and suggest a set of guidelines for how and where resilience can be enhanced via management interventions. We argue that press‐type stressors (pollution, sedimentation, overfishing, ocean warming and acidification) are key threats to coral reef resilience by affecting processes underpinning resistance and recovery, while pulse‐type (acute) stressors (e.g. storms, bleaching events, crown‐of‐thorns starfish outbreaks) increase the demand for resilience. We apply the framework to a set of example problems for Caribbean and Indo‐Pacific reefs. A combined strategy of active risk reduction and resilience support is needed, informed by key management objectives, knowledge of reef ecosystem processes and consideration of environmental and social drivers. As climate change and ocean acidification erode the resilience and increase the vulnerability of coral reefs globally, successful adaptive management of coral reefs will become increasingly difficult. Given limited resources, on‐the‐ground solutions are likely to focus increasingly on actions that support resilience at finer spatial scales, and that are tightly linked to ecosystem goods and services. 相似文献
16.
Predicting changes in the distribution and abundance of species under environmental change 下载免费PDF全文
William F. Morris 《Ecology letters》2015,18(3):303-314
Environmental changes are expected to alter both the distribution and the abundance of organisms. A disproportionate amount of past work has focused on distribution only, either documenting historical range shifts or predicting future occurrence patterns. However, simultaneous predictions of abundance and distribution across landscapes would be far more useful. To critically assess which approaches represent advances towards the goal of joint predictions of abundance and distribution, we review recent work on changing distributions and on effects of environmental drivers on single populations. Several methods have been used to predict changing distributions. Some of these can be easily modified to also predict abundance, but others cannot. In parallel, demographers have developed a much better understanding of how changing abiotic and biotic drivers will influence growth rate and abundance in single populations. However, this demographic work has rarely taken a landscape perspective and has largely ignored the effects of intraspecific density. We advocate a synthetic approach in which population models accounting for both density dependence and effects of environmental drivers are used to make integrated predictions of equilibrium abundance and distribution across entire landscapes. Such predictions would constitute an important step forward in assessing the ecological consequences of environmental changes. 相似文献
17.
Peter J. Mumby James N. Sanchirico Kenneth Broad Michael W. Beck Peter Tyedmers Megan Morikawa Thomas A. Okey Larry B. Crowder Elizabeth A. Fulton Denny Kelso Joanie A. Kleypas Stephan B. Munch Polita Glynn Kathryn Matthews Jane Lubchenco 《Global Change Biology》2017,23(11):4483-4496
Climate change and ocean acidification are altering marine ecosystems and, from a human perspective, creating both winners and losers. Human responses to these changes are complex, but may result in reduced government investments in regulation, resource management, monitoring and enforcement. Moreover, a lack of peoples’ experience of climate change may drive some towards attributing the symptoms of climate change to more familiar causes such as management failure. Taken together, we anticipate that management could become weaker and less effective as climate change continues. Using diverse case studies, including the decline of coral reefs, coastal defences from flooding, shifting fish stocks and the emergence of new shipping opportunities in the Arctic, we argue that human interests are better served by increased investments in resource management. But greater government investment in management does not simply mean more of “business‐as‐usual.” Management needs to become more flexible, better at anticipating and responding to surprise, and able to facilitate change where it is desirable. A range of technological, economic, communication and governance solutions exists to help transform management. While not all have been tested, judicious application of the most appropriate solutions should help humanity adapt to novel circumstances and seek opportunity where possible. 相似文献
18.
19.
20.
Plant diversity and insect herbivores: effects of environmental change in contrasting model systems 总被引:3,自引:0,他引:3
There is increasing concern over the potential impact of anthropogenic factors (e.g. increasing nutrient inputs, global climate change) on the rate of loss of diversity in ecosystems. Such losses may affect ecosystem processes. In addition, a change in diversity of one group of organisms may influence the diversity of species of the next trophic level. We examined the extent to which plant species richness influences that of insect herbivores in two systems: a long‐term field experiment on heather moorland and a model community in the Ecotron controlled environment facility. We examined the response of these two plant communities to environmental change, specifically increased levels of nutrients, grazing and atmospheric CO2. We measured the indirect effects of changes in these factors on insect herbivores, both above‐ and below‐ground. In the moorland system, grazing was the largest influence on plant community structure. The community was dominated by one species, Calluna vulgaris, and loss of cover under heavy grazing allowed competing species to invade. However, grazing regime was not a major influence on the species richness of the insect herbivore community. Site was more important: there were a greater number of Hemiptera species on sites with more mineral soils than on peat sites, possibly because a greater variety of grass and herb species was present on the former sites. In the Ecotron, below‐ground factors were also important drivers of community change: elevated CO2 increased carbon availability in the soil and there were simultaneous changes in the community composition of soil biota. Above‐ground, some plant species increased in abundance and others decreased, leading to interaction‐specific effects on the insect herbivores. In two very different studies of the effects of environmental change on the interactions between plants and their herbivores, several similar conclusions can be drawn: (1) effects are likely to be site‐ and interaction‐specific; (2) outcomes are likely to be strongly dependent on the initial state and the dominant species of the plant community; and (3) indirect effects, often mediated by below‐ground factors, may have a bigger influence on insect‐plant interactions than more direct effects of above‐ground factors. 相似文献