共查询到20条相似文献,搜索用时 26 毫秒
1.
This article describes a method to detect and analyze dynamic interactions between a protein of interest and other factors in vivo. Our method is based on the amber suppression technology that was originally developed by Peter Schultz and colleagues1. An amber mutation is first introduced at a specific codon of the gene encoding the protein of interest. The amber mutant is then expressed in E. coli together with genes encoding an amber suppressor tRNA and an amino acyl-tRNA synthetase derived from Methanococcus jannaschii. Using this system, the photo activatable amino acid analog p-benzoylphenylalanine (Bpa) is incorporated at the amber codon. Cells are then irradiated with ultraviolet light to covalently link the Bpa residue to proteins that are located within 3-8 Å. Photocrosslinking is performed in combination with pulse-chase labeling and immunoprecipitation of the protein of interest in order to monitor changes in protein-protein interactions that occur over a time scale of seconds to minutes. We optimized the procedure to study the assembly of a bacterial virulence factor that consists of two independent domains, a domain that is integrated into the outer membrane and a domain that is translocated into the extracellular space, but the method can be used to study many different assembly processes and biological pathways in both prokaryotic and eukaryotic cells. In principle interacting factors and even specific residues of interacting factors that bind to a protein of interest can be identified by mass spectrometry. 相似文献
2.
3.
Hedwig-Annabell Schild Sebastian W. Fuchs Helge B. Bode Bernd Grünewald 《Applied and environmental microbiology》2014,80(8):2484-2492
The spore-forming bacterium Paenibacillus larvae causes a severe and highly infective bee disease, American foulbrood (AFB). Despite the large economic losses induced by AFB, the virulence factors produced by P. larvae are as yet unknown. To identify such virulence factors, we experimentally infected young, susceptible larvae of the honeybee, Apis mellifera carnica, with different P. larvae isolates. Honeybee larvae were reared in vitro in 24-well plates in the laboratory after isolation from the brood comb. We identified genotype-specific differences in the etiopathology of AFB between the tested isolates of P. larvae, which were revealed by differences in the median lethal times. Furthermore, we confirmed that extracts of P. larvae cultures contain low-molecular-weight compounds, which are toxic to honeybee larvae. Our data indicate that P. larvae secretes metabolites into the medium with a potent honeybee toxic activity pointing to a novel pathogenic factor(s) of P. larvae. Genome mining of P. larvae subsp. larvae BRL-230010 led to the identification of several biosynthesis gene clusters putatively involved in natural product biosynthesis, highlighting the potential of P. larvae to produce such compounds. 相似文献
4.
5.
Monocyte and Macrophage Killing of Helicobacter pylori: Relationship to Bacterial Virulence Factors 总被引:1,自引:0,他引:1
Background: Helicobacter pylori infection is an important health problem, as it involves approximately 50% of the world's population, causes chronic inflammatory disease and increases the risk of gastric cancer development. H. pylori infection elicits a vigorous immune response, but this does not usually result in bacterial clearance. We have investigated whether the persistence of H. pylori in the host could be partly due to an inability of macrophages to kill this bacterium.
Materials and Methods: Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island ( cag PAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection.
Results: The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes.
Conclusions: Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cag PAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity. 相似文献
Materials and Methods: Monocytes and macrophages isolated from the peripheral blood of normal human controls were infected in vitro with five H. pylori isolates. The isolates were characterized for known H. pylori virulence factors; vacuolating cytotoxin (VacA), the cag pathogenicity island ( cag PAI), urease, and catalase by Western blot and polymerase chain reaction analysis. The ability of primary human monocytes and macrophages to kill each of these H. pylori strains was then defined at various time points after cellular infection.
Results: The five H. pylori strains showed contrasting patterns of the virulence factors. There were different rates of killing for the bacterial strains. Macrophages had less capacity than monocytes to kill three H. pylori strains. There appeared to be no correlation between the virulence factors studied and differential killing in monocytes.
Conclusions: Primary human monocytes had a higher capacity to kill certain strains of H. pylori when compared to macrophages. The VacA, cag PAI, urease, and catalase virulence factors were not predictive of the capacity to avoid monocyte and macrophage killing, suggesting that other factors may be important in H. pylori intracellular pathogenicity. 相似文献
6.
Zachary D. Dalebroux Sarah L. Svensson Erin C. Gaynor Michele S. Swanson 《Microbiology and molecular biology reviews》2010,74(2):171-199
Summary: Like for all microbes, the goal of every pathogen is to survive and replicate. However, to overcome the formidable defenses of their hosts, pathogens are also endowed with traits commonly associated with virulence, such as surface attachment, cell or tissue invasion, and transmission. Numerous pathogens couple their specific virulence pathways with more general adaptations, like stress resistance, by integrating dedicated regulators with global signaling networks. In particular, many of nature''s most dreaded bacteria rely on nucleotide alarmones to cue metabolic disturbances and coordinate survival and virulence programs. Here we discuss how components of the stringent response contribute to the virulence of a wide variety of pathogenic bacteria. 相似文献
7.
Using the Ralstonia solanacearum Tat Secretome To Identify Bacterial Wilt Virulence Factors 总被引:1,自引:0,他引:1 下载免费PDF全文
Enid T. Gonzlez Darby G. Brown Jill K. Swanson Caitilyn Allen 《Applied microbiology》2007,73(12):3779-3786
To identify secreted virulence factors involved in bacterial wilt disease caused by the phytopathogen Ralstonia solanacearum, we mutated tatC, a key component of the twin-arginine translocation (Tat) secretion system. The R. solanacearum tatC mutation was pleiotropic; its phenotypes included defects in cell division, nitrate utilization, polygalacturonase activity, membrane stability, and growth in plant tissue. Bioinformatic analysis of the R. solanacearum strain GMI1000 genome predicted that this pathogen secretes 70 proteins via the Tat system. The R. solanacearum tatC strain was severely attenuated in its ability to cause disease, killing just over 50% of tomato plants in a naturalistic soil soak assay where the wild-type parent killed 100% of the plants. This result suggested that elements of the Tat secretome may be novel bacterial wilt virulence factors. To identify contributors to R. solanacearum virulence, we cloned and mutated three genes whose products are predicted to be secreted by the Tat system: RSp1521, encoding a predicted AcvB-like protein, and two genes, RSc1651 and RSp1575, that were identified as upregulated in planta by an in vivo expression technology screen. The RSc1651 mutant had wild-type virulence on tomato plants. However, mutants lacking either RSp1521, which appears to be involved in acid tolerance, or RSp1575, which encodes a possible amino acid binding protein, were significantly reduced in virulence on tomato plants. Additional bacterial wilt virulence factors may be found in the Tat secretome. 相似文献
8.
The main objectives of this work were to investigate the effect of atmospheric cold plasma (ACP) against a range of microbial biofilms commonly implicated in foodborne and healthcare associated human infections and against P. aeruginosa quorum sensing (QS)-regulated virulence factors, such as pyocyanin, elastase (Las B) and biofilm formation capacity post-ACP treatment. The effect of processing factors, namely treatment time and mode of plasma exposure on antimicrobial activity of ACP were also examined. Antibiofilm activity was assessed for E. coli, L. monocytogenes and S. aureus in terms of reduction of culturability and retention of metabolic activity using colony count and XTT assays, respectively. All samples were treated ‘inpack’ using sealed polypropylene containers with a high voltage dielectric barrier discharge ACP generated at 80 kV for 0, 60, 120 and 300 s and a post treatment storage time of 24 h. According to colony counts, ACP treatment for 60 s reduced populations of E. coli to undetectable levels, whereas 300 s was necessary to significantly reduce populations of L. monocytogenes and S. aureus biofilms. The results obtained from XTT assay indicated possible induction of viable but non culturable state of bacteria. With respect to P. aeruginosa QS-related virulence factors, the production of pyocyanin was significantly inhibited after short treatment times, but reduction of elastase was notable only after 300 s and no reduction in actual biofilm formation was achieved post-ACP treatment. Importantly, reduction of virulence factors was associated with reduction of the cytotoxic effects of the bacterial supernatant on CHO-K1 cells, regardless of mode and duration of treatment. The results of this study point to ACP technology as an effective strategy for inactivation of established biofilms and may play an important role in attenuation of virulence of pathogenic bacteria. Further investigation is warranted to propose direct evidence for the inhibition of QS and mechanisms by which this may occur. 相似文献
9.
10.
11.
目的:分离纯化一种由纤维单胞菌属(Cellulomonose sp.)的细菌发酵产生的具有聚阿拉伯糖内切酶的性质的蛋白酶。方法:用薄板层析法(TLC)分离酶促反应的产物-寡糖,以Quanti-Scan软件计算薄板上条带的面积灰度值,以此定量,计算酶活力。用Bradford法测定蛋白含量。通过DEAE-Sepharose离子交换层析,SephacrylS-300分子筛和Blue-Dye活性染料亲和层析三种手段串联,对粗酶进行分离纯化,用SDS-PAGE测定纯度,SDS-PAGE和凝胶层析测定相对分子质量。结果:分离得到了电泳纯的阿拉伯糖内切酶,该酶的相对分子质量为45kD,蛋白酶比活性为15.42×10(3U/ug),纯化倍数为77.1。结论:该酶是一种阿拉伯糖内切酶,可以作为一种新型的工具酶,应用于结核分枝杆菌细胞壁的结构分析及寻找抗结核药物作用的靶点。 相似文献
12.
Mark J. Jedrzejas 《Microbiological reviews》2001,65(2):187-207
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease. 相似文献
13.
Erica J. Washington Mark J. Banfield Jeffery L. Dangl 《Microbiology and molecular biology reviews》2013,77(3):527-539
SUMMARY
Pathogenic bacteria commonly deploy enzymes to promote virulence. These enzymes can modulate the functions of host cell targets. While the actions of some enzymes can be very obvious (e.g., digesting plant cell walls), others have more subtle activities. Depending on the lifestyle of the bacteria, these subtle modifications can be crucially important for pathogenesis. In particular, if bacteria rely on a living host, subtle mechanisms to alter host cellular function are likely to dominate. Several bacterial virulence factors have evolved to use enzymatic deamidation as a subtle posttranslational mechanism to modify the functions of host protein targets. Deamidation is the irreversible conversion of the amino acids glutamine and asparagine to glutamic acid and aspartic acid, respectively. Interestingly, all currently characterized bacterial deamidases affect the function of the target protein by modifying a single glutamine residue in the sequence. Deamidation of target host proteins can disrupt host signaling and downstream processes by either activating or inactivating the target. Despite the subtlety of this modification, it has been shown to cause dramatic, context-dependent effects on host cells. Several crystal structures of bacterial deamidases have been solved. All are members of the papain-like superfamily and display a cysteine-based catalytic triad. However, these proteins form distinct structural subfamilies and feature combinations of modular domains of various functions. Based on the diverse pathogens that use deamidation as a mechanism to promote virulence and the recent identification of multiple deamidases, it is clear that this enzymatic activity is emerging as an important and widespread feature in bacterial pathogenesis. 相似文献14.
15.
16.
17.
Daniel Castillo Rói Hammershaimb Christiansen Inger Dalsgaard Lone Madsen Mathias Middelboe 《Applied and environmental microbiology》2015,81(3):1157-1167
Flavobacterium psychrophilum is an important fish pathogen in salmonid aquaculture worldwide. Due to increased antibiotic resistance, pathogen control using bacteriophages has been explored as a possible alternative treatment. However, the effective use of bacteriophages in pathogen control requires overcoming the selection for phage resistance in the bacterial populations. Here, we analyzed resistance mechanisms in F. psychrophilum after phage exposure using whole-genome sequencing of the ancestral phage-sensitive strain 950106-1/1 and six phage-resistant isolates. The phage-resistant strains had all obtained unique insertions and/or deletions and point mutations distributed among intergenic and genic regions. Mutations in genes related to cell surface properties, gliding motility, and biosynthesis of lipopolysaccharides and cell wall were found. The observed links between phage resistance and the genetic modifications were supported by direct measurements of bacteriophage adsorption rates, biofilm formation, and secretion of extracellular enzymes, which were all impaired in the resistant strains, probably due to superficial structural changes. The clustered regularly interspaced short palindromic repeat (CRISPR) region was unaffected in the resistant isolates and thus did not play a role as a resistance mechanism for F. psychrophilum under the current conditions. All together, the results suggest that resistance in F. psychrophilum was driven by spontaneous mutations, which were associated with a number of derived effects on the physiological properties of the pathogen, including reduced virulence under in vitro conditions. Consequently, phage-driven physiological changes associated with resistance may have implications for the impact of the pathogen in aquaculture, and these effects of phage resistance on host properties are therefore important for the ongoing exploration of phage-based control of F. psychrophilum. 相似文献
18.
G. Sykes 《Journal of applied microbiology》1963,26(3):287-294
19.
20.
Bacterial survival was determined in linens (i) inoculated with Staphylococcus aureus (ii), taken from hospital isolation patients' beds, and (iii) used by students in their homes. Two different washers using temperatures of 38, 49, 54 and 60 C, respectively, for different times were employed along with a commercial tumbler dryer. Findings, after macerating the linens in a Waring blender and enumerating on nonselective media, indicate that acceptable levels of survivors can be achieved in motel and hotel linens by an 8- to 10-min wash cycle at 54 C followed by adequate drying. However, it is recommended that a wash cycle with 60 C for 10 to 13 min be employed for linens in health care factilities. The microbial significance of various laundering practices is discussed. 相似文献