首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

2.
A Gram-stain negative, rod-shaped, non-motile, strictly aerobic bacterium HK-28T was isolated from a mangrove sediment sample in Haikou city, Hainan Province, China. Strain HK-28T was able to grow at 10–45 °C (optimum 25–30 °C), pH 5.0–8.5 (optimum 6.0–7.0) and 0.5–12.0% (w/v) NaCl (optimum 1.0–3.0%, w/v). The major cellular fatty acids were C16:0, Summed Feature 8 (C18:1 ω7c and/or C18:1 ω6c), Summed Feature 3 (C16:1 ω7c and/or C16:1 ω6c), C17:0, C12:0 3-OH and C17:1ω8c. Ubiquinone-8 (Q-8) was the predominant respiratory quinone. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, four unidentified phospholipids, two unidentified glycolipid, an unidentified glycophospholipid, an unidentified aminolipid and an unidentified lipid. The DNA G+C content was 50.2 mol%. Accoroding to 16S rRNA gene sequence similarities, strain HK-28T shared 97.1 and 96.7% sequence similarities to the validly named species Gallaecimonas xiamenensis MCCC 1A01354T and Gallaecimonas pentaromativorans MCCC 1A06435T, respectively, and shared lower sequence similarities (<?92.0%) to all other genera. Phylogenetic analysis showed strain HK-28T was clustered with G. pentaromativorans MCCC 1A06435T and G. xiamenensis MCCC 1A01354T. Strain HK-28T showed low DNA–DNA relatedness with G. xiamenensis MCCC 1A01354T (28.3?±?1.5%) and G. pentaromativorans MCCC 1A06435T (25.2?±?2.4%). On the basis of phenotypic, chemotaxonomic and genotypic characteristics, strain HK-28T is considered to represent a novel species in the genus Gallaecimonas, for which the name Gallaecimonas mangrovi sp. nov. is proposed. The type strain is HK-28T (=?KCTC 62177T?=?MCCC 1K03441).  相似文献   

3.
A novel Gram-stain positive, aerobic, short rod-shaped, non-motile bacterium, designated strain CHO1T, was isolated from rhizosphere soil from a ginseng agriculture field. Strain CHO1T was observed to form yellow colonies on R2A agar medium. The cell wall peptidoglycan was found to contain alanine, glycine, glutamic acid, d-ornithine and serine. The cell wall sugars were identified as galactose, mannose, rhamnose and ribose. Strain CHO1T was found to contain MK-11, MK-12, MK-13 as the predominant menaquinones and anteiso-C15:0, iso-C16:0, and anteiso-C17:0 as the major fatty acids. Diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, an unidentified phospholipid and three unidentified glycolipids were found to be present in strain CHO1T. Based on 16S rRNA gene sequence analysis, strain CHO1T was found to be closely related to Microbacterium mangrovi DSM 28240T (97.81 % similarity), Microbacterium immunditiarum JCM 14034T (97.45 %), Microbacterium oryzae JCM 16837T (97.33 %) and Microbacterium ulmi KCTC 19363T (97.10 %) and to other species of the genus Microbacterium. The DNA G+C content of CHO1T was determined to be 70.1 mol %. The DNA–DNA hybridization values of CHO1T with M. mangrovi DSM 28240T, M. immunditiarum JCM 14034T, M. oryzae JCM 16837T and M. ulmi KCTC 19363T were 46.7 ± 2, 32.4 ± 2, 32.0 ± 2 and 29.2 ± 2 %, respectively. On the basis of genotypic, phenotypic and phylogenetic properties, it is concluded that strain CHO1T represents a novel species within the genus Microbacterium, for which the name Microbacterium rhizosphaerae sp. nov. is proposed. The type strain of M. rhizosphaerae is CHO1T (= KEMB 7306-513T = JCM 31396T).  相似文献   

4.
The structures of cell wall glycopolymers from the type strains of three Actinoplanes species were investigated using chemical methods, NMR spectroscopy, and mass spectrometry. Actinoplanes digitatis VKM Ac-649T contains two phosphate-containing glycopolymers: poly(diglycosyl-1-phosphate) →6)-α-D-GlcpNAc-(1-P-6)-α-D-GlcpN-(1→ and teichoic acid →1)-sn-Gro-(3-P-3)-β-[β-D-GlcpNAc-(1→2]-D-Galp-(1→. Two glycopolymers were identified in A. auranticolor VKM Ac-648T and A. cyaneus VKM Ac-1095T: minor polymer–unsubstituted 2,3-poly(glycerol phosphate), widely abundant in actinobacteria (Ac-648T), and mannan with trisaccharide repeating unit →2)-α-D-Manp-(1→2)-α-D-Manp(1→6)-α-D-Manp-(1→(Ac-1095T). In addition, both microorganisms contain a teichuronic acid of unique structure containing a pentasaccharide repeating unit with two residues of glucopyranose and three residues of diaminouronic acids in D-manno- and/or D-gluco-configuration. Each of the strains demonstrates peculiarities in the structure of teichuronic acid with respect to the ratio of diaminouronic acids and availability and location of O-methyl groups in glucopyranose residues. All investigated strains contain a unique set of glycopolymers in their cell walls with structures not described earlier for prokaryotes.  相似文献   

5.
During ascogenesis in Neurospora, the ascospores are partitioned at the eight-nucleus stage that follows meiosis and a post-meiotic mitosis, and the ascospores that form in eight-spored asci are usually homokaryotic. We had previously created novel T Nt strains by introgressing four Neurospora crassa insertional translocations (EB4, IBj5, UK14-1, and B362i) into N. tetrasperma. We now show that crosses of all the T Nt strains with single-mating-type derivatives of the standard N. tetrasperma pseudohomothallic strain 85 (viz. T Nt a × 85A or T Nt A × 85a) can produce rare eight-spored asci that contain heterokaryotic ascospores, or ascospores with other unexpected genotypes. Our results suggest that these rare asci result from the interposition of additional mitoses between the post-meiotic mitosis and the partitioning of nuclei into ascospores, leading to the formation of supernumerary nuclei that then generate the heterokaryotic ascospores. The rare asci probably represent a background level of ascus dysgenesis wherein the partitioning of ascospores becomes uncoupled from the post-meiotic mitosis. Ordinarily, the severest effect of such dysgenesis, the production of mating-type heterokaryons, would be suppressed by the N. crassa tol (tolerant) gene, thus explaining why such dysgenesis remained undetected thus far.  相似文献   

6.
An actinobacteria strain PAL114, isolated from a Saharan soil in Algeria, produces bioactive compounds. Morphological and chemical studies indicated that this strain belongs to the genus Streptomyces. Analysis of the 16S rRNA gene sequence showed a similarity level of 99.8 % with S. griseoflavus LMG 19344T, the most closely related species. Two bioactive compounds, named P44 and P40, were extracted by dichloromethane from the cell-free supernatant broth and were purified by HPLC. Minimum inhibitory concentrations (MIC) of the compounds were determined against pathogenic and toxigenic microorganisms, most of which are multiresistant to antibiotics. The P40 fraction showed a strong activity especially against Candida albicans, Bacillus subtilis, and Staphylococcus aureus and has lower MIC values than those of P44 against most microorganisms tested. Chemical structures of compounds were determined based on spectroscopic and spectrometric analyses (UV-visible, mass, 1H, and 13C NMR spectra). The compounds P44 and P40 were identified as vineomycin A1 and chaetoglobosin A, respectively. Vineomycin A1 is known to be produced by some Streptomyces species. However, chaetoglobosin A is known to be produced only by fungi belonging to the genera Chaetomium, Penicillium, and Calonectria. This is the first time that chaetoglobosin A, known for its antimicrobial, anticancer, and cytotoxic effects, is reported in prokaryotes.  相似文献   

7.
8.
Endophytic actinobacteria that lived in any associations with plant tissues represented a rather unexplored area of actinobacteria compared with soils. Gynura cusimbua was a kind of medicinal plant which had prevention effects for high blood pressure, coronary heart disease, Alzheimer’s disease, atherosclerosis, etc. Endophytic actinobacteria of G. cusimbua might produce some secondary metabolites which had the same function as their host. Stem samples of G. cusimbua collected from Hainan Province were used to study their endophytic actinobacteria to find some new compounds. In order to avoid vast proportions of the host plant DNA in the metagenomic library, the strategies of enrichment of the microorganism cells after tissue digestion and exclusion of 16S rRNA gene derived from the plastid by digested with PvuII were used. Two sets of actinobacteria specific primers were used for targeting endophytic actinobacteria from metagenomic library. 63 positive clones of actinobacteria were selected for sequencing and constructing the phylogenetic tree of 16S rRNA gene, and the 16S rRNA gene sequence of 59 strains among them had higher similar to the closest type strain and belonged to Microbacterium, Arthrobacter, Micrococcus, Curtobacterium, Okibacterium, Quadrisphaera and Kineococcus, respectively. Others were in low similarity and belonged to unclassified Micrococcineae, unclassified Intrasporangiaceae and unclassified Microbacteriaceae.  相似文献   

9.
The rewarding orchid Epipactis flava was studied in NW Thailand. Its flowers were visited by a wide range of insects, most of which served as pollinators. The most frequent pollen bearers were (in decreasing order): the cricket Homoeoxipha lycoides, stingless bees of the Tetragonula testaceitarsis/hirashimai complex, hoverflies of subfam. Syrphinae, the wasp Polybioides gracilis and sweat bees of subfam. Halictinae. We found no evidence of a link between the rheophytic habit of E. flava and its pollinator fauna. Whereas most pollinators visited the flowers to feed on nectar, females of Episyrphus alternans (Syrphidae: Syrphinae) were observed to oviposit despite the absence of prey for their young. Hence, we suggest that dual pollination systems contribute to the opportunist strategy of E. flava, and we discuss, in a phylogenetic framework, how the strategy fits in with those previously reported for Epipactis sect. Arthrochilium. The elastic attachment of the epichile (a universal trait in sect. Arthrochilium) was found to promote outcrossing, and we hypothesize that loss of the elastic hinge has provided a key innovation facilitating recurrent evolution of obligate autogamy in sect. Epipactis (which is nested in sect. Arthrochilium).  相似文献   

10.
Our studies have shown that the genotype and allele frequencies of polymorphisms G(?1607)GG of MMP1 gene, C(?1562)T of MMP9 gene, and A(?82)G of MMP12 gene do not significantly differ in the samples of chronic obstructive pulmonary disease (COPD) patients (N = 318) and healthy controls (N = 319) dwelling in Bashkortostan Republic. However, association of (?1562)T allele of the MMP9 gene with the severity of COPD disease progression has been revealed. In COPD patients at stage 4 of the disease, the frequency of allele T was significantly higher that in patients with the stages 2 and 3 (15.89% versus 8.38%; χ2 = 7.804; d.f. = 1; P = 0.005; OR = 2.06 95% CI 1.22–3.49). The distribution of the genotype frequencies of C(?1562)T polymorphism of MMP9 gene significantly differed between the patients with various COPD severity (χ2 = 9.849; d.f. = 2; P = 0.007). The individuals with rare genotype TT were revealed only among patients with severe COPD form (3.97% versus 0%; χ2 = 4.78; P = 0.029; P cor = 0.058). Analysis of this polymorphism in patients with early COPD onset (younger than 55 years old) has shown a significant increase in the allele T frequency in the group of patients with severe COPD (stage 4 according to GOLD) compared to the patients of the same age but with less severe COPD progression (χ2 = 5.26; d.f. = 1; P = 0.022). As the major clinical characteristics of stage 4 COPD is the development of pulmonary emphysema as well as bronchial walls deformation, we suggest that the increased expression of MMP9 gene caused by genetic polymorphism in the gene promoter is important in the early development of serious complications of the disease.  相似文献   

11.
A Gram-stain negative, aerobic, motile, non-spore-forming and rod-shaped bacterial strain, designated YIM 730227T, was isolated from a soil sample, collected from Karak district, Khyber-Pakhtun-Khwa, Pakistan. The bacterium was characterized using a polyphasic taxonomic approach. Pairwise comparison of the 16S rRNA gene sequences showed that strain YIM 730227T is closely related to Phenylobacterium lituiforme FaiI3T (97.5% sequence similarity), Phenylobacterium muchangponense A8T (97.4%), Phenylobacterium panacis DCY109T (97.1%), Phenylobacterium immobile ET (97.1%) and Phenylobacterium composti 4T-6T (97.0%), while also sharing 98.0% sequence similarity with Phenylobacterium hankyongense HKS-05T after NCBI blast, showing it represents a member of the family Caulobacteraceae. The major respiratory quinone was Q-10 and the major fatty acids were C16:0, summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c), C18:1ω7c 11-methyl and C17:0. The polar lipids were phosphatidylglycerol, unidentified glycolipids, phospholipid and unidentified lipid. The G?+?C content of the genomic DNA was 68.2 mol%. The DNA–DNA relatedness values of strain YIM 730227T with P. hankyongense HKS-05T, P. lituiforme FaiI3T, P. muchangponense A8T, P. panacis DCY109T, P. immobile ET and P. composti 4T-6T were 31.3?±?0.6, 26.1?±?0.2, 24.3?±?0.1, 21.8?±?0.9, 19.8?±?0.6 and 18.2?±?1.1%, respectively, values lower than 70%. Besides the morphological and chemotaxonomic characteristics, phylogenetic analyses of 16S rRNA gene sequences and the biochemical characteristics indicated that the strain YIM 730227T represents a novel member of the genus Phenylobacterium, for which the name Phenylobacterium terrae sp. nov. (type strain YIM 730227T =?KCTC62324T?=?CGMCC 1.16326T) is proposed.  相似文献   

12.
Strains pyc13T and ZGT13 were isolated from Lake Pengyan and Lake Zigetang on Tibetan Plateau, respectively. Both strains were Gram-negative, catalase- and oxidase-positive, aerobic, rod-shaped, nonmotile, and nonflagellated bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains pyc13T and ZGT13 belong to the genus Halomonas, with Halomonas alkalicola 56-L4-10aEnT as their closest neighbor, showing 97.4% 16S rRNA gene sequence similarity. The predominant respiratory quinone of both strains was Q-9, with Q-8 as a minor component. The major fatty acids of both strains were C18:1ω6c/C18:1ω7c, C16:1ω6c/C16:1ω7c, C16:0, and C12:0 3OH. The polar lipids of both strains consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, glycolipid, phospholipids of unknown structure containing glucosamine, and unidentified phospholipids. The DNA G + C content of pyc13T and ZGT13 were 62.6 and 63.4 mol%, respectively. The DNA-DNA hybridization values of strain pyc13T were 34, 41, 61, 35, and 35% with the reference strains H. alkalicola 56-L4-10aEnT, H. sediminicola CPS11T, H. mongoliensis Z-7009T, H. ventosae Al12T, and H. fontilapidosi 5CRT, respectively. Phenotypic, biochemical, genotypic, and DNA-DNA hybridization data showed that strains pyc13T and ZGT13 represent a new species within the genus Halomonas, for which the name H. tibetensis sp. nov. is proposed. The type strain is pyc13T (= CGMCC 1.15949T = KCTC 52660T).  相似文献   

13.
The taxonomic position of a Gram-stain-negative, rod-shaped bacterial strain, designated PI11T, isolated from the rhizospheric sediment of Phragmites karka was characterized using a polyphasic approach. Strain PI11T could grow optimally at 1.0% NaCl concentration with pH 7.0 at 30°C and was positive for oxidase and catalase but negative for hydrolysis of starch, casein, and esculin ferric citrate. Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain PI11T belonged to the genus Pseudomonas sharing the highest sequence similarities with Pseudomonas indoloxydans JCM 14246T (99.72%), followed by, Pseudomonas oleovorans subsp. oleovorans DSM 1045T (99.29%), Pseudomonas toyotomiensis JCM 15604T (99.15%), Pseudomonas chengduensis DSM 26382T (99.08%), Pseudomonas oleovorans subsp. lubricantis DSM 21016T (99.08%), and Pseudomonas alcaliphila JCM 10630T (99.01%). Experimental DNA-DNA relatedness between strain PI11T and P. indoloxydans JCM 14246T was 49.4%. The draft genome of strain PI11T consisted of 4,884,839 bp. Average nucleotide identity between the genome of strain PI11T and other closely related type strains ranged between 77.25–90.74%. The polar lipid pattern comprised of phosphatidylglycerol, diphosphatidylglycerol, and phosphatidylcholine. The major (> 10%) cellular fatty acids were C18:1ω6c/ω7c, C16:1ω6c/ω7c, and C16:0. The DNA G + C content of strain PI11T was 62.4 mol%. Based on the results of polyphasic analysis, strain PI11T was delineated from other closely related type strains. It is proposed that strain PI11T represents represents a novel species of the genus Pseudomonas, for which the name Pseudomonas sediminis sp. nov. is proposed. The type strain is PI11T (= KCTC 42576T = DSMZ 100245T).  相似文献   

14.
An actinomycete strain, 2603PH03T, was isolated from a mangrove rhizosphere soil sample collected in Wenchang, China. Phylogenetic analysis of the 16S rRNA gene sequence of strain 2603PH03T indicated high similarity to Verrucosispora gifthornensis DSM 44337T (99.4%), Verrucosispora andamanensis (99.4%), Verrucosispora fiedleri MG-37T (99.4%) and Verrucosispora maris AB18-032T (99.4%). The cell wall was found to contain meso-diaminopimelic acid and glycine. The major menaquinones were identified as MK-9(H4), MK-9(H6) and MK-9(H8), with MK-9(H2), MK-10(H2), MK-9(H10) and MK-10(H6) as minor components. The characteristic whole cell sugars were found to be xylose and mannose. The phospholipid profile was found to contain phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylserine and an unidentified phospholipid. The DNA G+C content was determined to be 70.1 mol%. The results of physiological and biochemical tests and low DNA-DNA relatedness readily distinguished the isolate from the closely related species. On the basis of these phenotypic and genotypic data, strain 2603PH03T is concluded to represent a novel species of the genus Verrucosispora, for which the name Verrucosispora rhizosphaerae sp. nov. is proposed. The type strain is 2603PH03T (=CCTCC AA 2016023T = DSM 45673T).  相似文献   

15.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

16.
A marine bacterial strain, F72T, was isolated from a solitary scleractinian coral, collected in Yap seamounts in the Pacific Ocean. Strain F72T is a Gram-negative, light-yellow-pigmented, motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain F72T is related to the genus Novosphingobium and has high 16S rRNA gene sequence similarities with the type strains of Novosphingobium pentaromativorans US6-1T (97.7 %), Novosphingobium panipatense SM16T (97.6 %), Novosphingobium mathurense SM117T (97.2 %) and Novosphingobium barchaimii LL02T (97.1 %). Ubiquinone Q-10 was detected as the dominant quinone. The predominant cellular fatty acids were C18:1ω7c and C17:1ω6c. The genomic DNA G+C content of strain F72T was 63.4 mol %. The polar lipids profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine, sphingoglycolipid and one uncharacterized lipid. Strain F72T shared DNA relatedness of 25 % with N. pentaromativorans JCM 12182T, 31 % with N. panipatense DSM 22890T, 21 % with N. mathurense DSM 23374T and 26 % with N. barchaimii DSM 25411T. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that the strain F72T is a representative of a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium profundi sp. nov. (type strain F72T = KACC 18566T = CGMCC 1.15390T).  相似文献   

17.
Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment d-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.  相似文献   

18.
A Gram-stain negative, aerobic, motile by flagella, rod-shaped strain (THG-T16T) was isolated from rhizosphere of Hibiscus syriacus. Growth occurred at 10–40 °C (optimum 28–30 °C), at pH 6.0–8.0 (optimum 7.0) and at 0–1.0% NaCl (optimum 0%). Based on 16S rRNA gene sequence analysis, the near phylogenetic neighbours of strain THG-T16T were identified as Nibribacter koreensis KACC 16450T (98.6%), Rufibacter roseus KCTC 42217T (94.7%), Rufibacter immobilis CCTCC AB 2013351T (94.5%) and Rufibacter tibetensis CCTCC AB 208084T (94.4%). The DNA G+C content of strain THG-T16T was determined to be 46.7 mol%. DNA–DNA hybridization values between strain THG-T16T and N. koreensis KACC 16450T, R. roseus KCTC 42217T, R. immobilis CCTCC AB 2013351T, R.tibetensis CCTCC AB 208084T were 33.5?±?0.5% (31.7?±?0.7% reciprocal analysis), 28.1?±?0.2% (25.2?±?0.2%), 17.1?±?0.9% (10.2?±?0.6%) and 8.1?±?0.3% (5.2?±?0.1%). The polar lipids were identified as phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified aminolipid and three unidentified lipids. The quinone was identified as MK-7 and the polyamine as sym-homospermidine. The major fatty acids were identified as C16:1 ω5c, C17:1 ω6c, iso-C15:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and summed feature 4 (iso-C17:1 I and/or anteiso-C17:1 B). On the basis of the phylogenetic analysis, chemotaxonomic data, physiological characteristics, and DNA–DNA hybridization data, strain THG-T16T represents a novel species of the genus Nibribacter, for which the name Nibribacter flagellatus sp. nov. is proposed. The type strain is THG-T16T(=?KACC 19188T?=?CCTCC AB 2016246T).  相似文献   

19.
SYP-B2174T is a yellow-pigmented, Gram-positive, non-motile, and rod-shaped actinobacterium isolated from the rhizospheric soil of Aquilegia viridiflora Pall. collected from the Xinjiang uygur autonomous region of China. The strain’s growth temperature ranges from 1 to 35°C, with an optimal growth being observed at 28°C. Growth occurs from 0 to 5% NaCl and at pH 6–8, with optimal growth being observed in 1% NaCl at pH 7. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis JCM 17021T and Leifsonia psychrotolerans DSM 22824T with similarities of 97.8 and 97.6%, respectively. The DNA-DNA hybridization values of the strain SYP-B2174T to its closest phylogenetic neighbors were significantly lower than 35.7%. The strain was identified as a novel species of the genus Leifsonia judging by the coryneform morphology, peptidoglycans based upon 2,4-diaminobutyric acid, principal phospholipids phosphatidylglycerol and diphosphatidylglycerol, major menaquinone MK-11, predominant fatty acids of anteiso-C15:0, anteiso-C17:0, and iso-C16:0, and a DNA G + C base composition of 68.7 mol%, for which the name Leifsonia flava sp. nov. is proposed. The type strain is SYP-B2174T (= CGMCC 1.15856T = DSM 105144T = KCTC 39963T).  相似文献   

20.
A novel actinomycete, designated strain NEAU-LA29T, was isolated from soil collected from Xianglu Mountain and subjected to a polyphasic taxonomic study. Based on a polyphasic taxonomic approach comprising chemotaxonomic, phylogenetic, morphological and physiological characterisation, the isolate has been affiliated to the genus Streptomyces. 16S rRNA gene sequence analysis showed that the isolate is closely related to Streptomyces vastus JCM4524T (98.8% identity) and Streptomyces cinereus DSM43033T (97.9%). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, rpoB, recA and trpB) and low DNA–DNA relatedness values enabled the strain to be differentiated from these closely related species of the genus Streptomyces. Thus, strain NEAU-LA29T is concluded to represent a novel species of the genus Streptomyces, for which the name Streptomyces xiangluensis sp. nov. is proposed. The type strain is NEAU-LA29T (=?CGMCC 4.7466T?=?DSM 105786T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号