共查询到20条相似文献,搜索用时 15 毫秒
1.
ADP-ribosylation factors (ARFs) are monomeric G proteins that regulate many cellular processes such as reorganization of the actin cytoskeleton. We have previously shown that ARF1 is overexpressed in highly invasive breast cancer cells and contribute to their enhanced migration. In this study, we propose to define the molecular mechanism by which ARF1 regulates this complex cellular response by investigating the role of this ARF GTPase on the activation process of Rac1, a Rho GTPase, associated with lamellipodia formation during cell migration. Here, we first show that inhibition of ARF1 or Rac1 expression markedly impacts the ability of MDA-MB-231 cells to migrate upon EGF stimulation. However, the effect of ARF1 depletion can be reversed by overexpression of the Rac1 active mutant, Rac1 Q61L. Depletion of ARF1 also impairs the ability of EGF stimulation to promote GTP-loading of Rac1. To further investigate the possible cross-talk between ARF1 and Rac1, we next examined whether they could form a complex. We observed that the two GTPases could directly interact independently of the nature of the nucleotide bound to them. EGF treatment however resulted in the association of Rac1 with its effector IRSp53, which was completely abrogated in ARF1 depleted cells. We present evidences that this ARF isoform is responsible for the plasma membrane targeting of both Rac1 and IRSp53, a step essential for lamellipodia formation. In conclusion, this study provides a new mechanism by which ARF1 regulates cell migration and identifies this GTPase as a promising pharmacological target to reduce metastasis formation in breast cancer patients. 相似文献
2.
3.
Karlenius TC Shah F Di Trapani G Clarke FM Tonissen KF 《Biochemical and biophysical research communications》2012,419(2):350-355
The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation. 相似文献
4.
5.
Soo-Jin Park Kyoung-Pil Lee Saeromi Kang Hae-Young Chung Yoe-Sik Bae Fumikazu Okajima Dong-Soon Im 《Cellular signalling》2013,25(11):2147-2154
Lysophosphatidylethanolamine (LPE) is a lyso-type metabolite of phosphatidylethanolamine (a plasma membrane component), and its intracellular Ca2 + ([Ca2 +]i) increasing actions may be mediated through G-protein-coupled receptor (GPCR). However, GPCRs for lysophosphatidic acid (LPA), a structurally similar representative lipid mediator, have not been implicated in LPE-mediated activities in SK-OV3 or OVCAR-3 ovarian cancer cells or in receptor over-expression systems. In the present study, LPE-induced [Ca2 +]i increase was observed in MDA-MB-231 cells but not in other breast cancer cell lines. In addition, LPE- and LPA-induced responses showed homologous and heterologous desensitization. Furthermore, VPC32183 and Ki16425 (antagonists of LPA1 and LPA3) inhibited LPE-induced [Ca2 +]i increases, and knockdown of LPA1 by transfection with LPA1 siRNA completely inhibited LPE-induced [Ca2 +]i increases. Furthermore, the involvement of CD97 (an adhesion GPCR) in the action of LPA1 in MDA-MB-231 cells was demonstrated by siRNA transfection. Pertussis toxin (a specific inhibitor of Gi/o proteins), edelfosine (an inhibitor of phospholipase C), or 2-APB (an inhibitor of IP3 receptor) completely inhibited LPE-induced [Ca2 +]i increases, whereas HA130, an inhibitor of autotaxin/lysophospholipase D, did not. Therefore, LPE is supposed to act on LPA1-CD97/Gi/o proteins/phospholipase C/IP3/Ca2 + rise in MDA-MB-231 breast cancer cells. 相似文献
6.
Gingerol (Zingiber officinale Roscoe, Zingiberaceae) is one of the most frequently and heavily consumed dietary condiments throughout the world. The oleoresin from rhizomes of ginger contains [6]-gingerol (1-[4′-hydroxy-3′-methoxyphenyl]-5-hydroxy-3-decanone) and its homologs which are pungent ingredients that have been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, antihepatotoxic and cardiotonic effects. However, the effects of [6]-gingerol on metastatic processes in breast cancer cells are not currently well known. Therefore, in this study, we examined the effects of [6]-gingerol on adhesion, invasion, motility, activity and the amount of MMP-2 or -9 in the MDA-MB-231 human breast cancer cell line. We cultured MDA-MB-231 cells in the presence of various concentrations of [6]-gingerol (0, 2.5, 5 and 10 μM). [6]-Gingerol had no effect on cell adhesion up to 5 μM, but resulted in a 16% reduction at 10 μM. Treatment of MDA-MB-231 cells with increasing concentrations of [6]-gingerol led to a concentration-dependent decrease in cell migration and motility. The activities of MMP-2 or MMP-9 in MDA-MB-231 cells were decreased by treatment with [6]-gingerol and occurred in a dose-dependent manner. The amount of MMP-2 protein was decreased in a dose-dependent manner, although there was no change in the MMP-9 protein levels following treatment with [6]-gingerol. MMP-2 and MMP-9 mRNA expression were decreased by [6]-gingerol treatment. In conclusion, we have shown that [6]-gingerol inhibits cell adhesion, invasion, motility and activities of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines. 相似文献
7.
Sylvia Lymburner Sarah McLeod Markus Purtzki Calvin Roskelley Zhaoming Xu 《The Journal of nutritional biochemistry》2013,24(6):1034-1040
Metastasis is the major cause of breast cancer mortality. The strength of cell adhesion to extracellular matrix is critical to cancer cell migration. Integrins, the primary mediators of cell to extra-cellular matrix adhesion, contain distinct divalent cation-binding sites. Binding of manganese and magnesium is vital to integrin-mediated cancer cell adhesion and migration. We hypothesized that zinc, a divalent cation, can modulate breast cancer metastasis through interfering with these divalent cation-dependent integrin-mediated cancer cell adhesion and migration. MDA-MB-231 cells were cultured in a zinc-depleted medium supplemented with 0 (control), 2.5, 5, 10, 25 and 50 μM of zinc to mimic severe zinc-deficiency, moderate zinc-deficiency, adequate zinc and three levels of zinc-supplementation: low-, moderate- and high-levels of zinc-supplementation, respectively. Zinc treatments had no effect on cellular zinc concentration, cell number and cell viability. Zinc at 5–50 μM reduced migration distance of MDA-MB-231 cells on fibronectin by 43–86% and migration rate on fibronectin by 72–90%. Zinc induced a dose-dependent inhibition of cell adhesion to fibronectin (R2=?0.98). Zinc at 10–50 μM reduced magnesium-facilitated cell adhesion to fibronectin in a dose-dependent manner (R2=?0.90). However, zinc had no effect on manganese-facilitated cell adhesion to fibronectin. Zinc at 5–50 μM caused rounding of the normally elongated, irregular-shaped MDA-MB-231 cells and disappearance of F-actin. Anti-integrin α5- and β1-subunit blocking antibodies inhibited magnesium-facilitated cell adhesion to fibronectin by 95 and 99%, respectively. In summary, zinc inhibited MDA-MB-231 cell migration on fibronectin by interfering with magnesium-dependent integrin-, likely integrin α5/β1-, mediated adhesion. 相似文献
8.
9.
Akekawatchai C Holland JD Kochetkova M Wallace JC McColl SR 《The Journal of biological chemistry》2005,280(48):39701-39708
In the multimolecular environment in tissues and organs, cross-talk between growth factor and G protein-coupled receptors is likely to play an important role in both normal and pathological responses. In this report, we demonstrate transactivation of the chemokine receptor CXCR4 by the growth factor insulin-like growth factor (IGF)-1 is required for IGF-1-induced cell migration in metastatic MDA-MB-231 cells. The induction of chemotaxis in MDA-MB-231 cells by IGF-1 was inhibited by pretreatment of the cells with pertussis toxin (PTX) and by RNAi-mediated knockdown of CXCR4. Transactivation of the CXCR4 pathway by IGF-1 occurred independently of CXCL12, the chemokine ligand of CXCR4. Neither CXCR4 knockdown nor PTX had any effect on the ability of IGF-1 to activate IGF-1R, suggesting that CXCR4 and G proteins are activated subsequent to, or independently of, phosphorylation of IGF-1R by IGF-1. Coprecipitation studies revealed the presence of a constitutive complex containing IGF-1R, CXCR4, and the G protein subunits, G(i)alpha2 and Gbeta, and stimulation of MDA-MB-231 cells with IGF-1 led to the release of G(i)alpha2 and Gbeta from CXCR4. Based on our findings, we propose that CXCR4 constitutively forms a complex with IGF-1R in MDA-MB-231 cells, and that this interaction allows IGF-1 to activate migrational signaling pathways through CXCR4, G(i)alpha2 and Gbeta. 相似文献
10.
11.
12.
13.
Justina Kazokaitė Samantha Ames Holger M. Becker Joachim W. Deitmer 《Journal of enzyme inhibition and medicinal chemistry》2016,31(6):38-44
AbstractHuman carbonic anhydrase IX (CA IX) is overexpressed in the most aggressive and invasive tumors. Therefore, CA IX has become the promising antitumor drug target. Three inhibitors have been shown to selectively and with picomolar affinity inhibit human recombinant CA IX. Their inhibitory potencies were determined for the CA IX, CA II, CA IV and CA XII in Xenopus oocytes and MDA-MB-231 cancer cells. The inhibition IC50 value of microelectrode-monitored intracellular and extracellular acidification reached 15?nM for CA IX, but with no effect on CA II expressed in Xenopus oocytes. Results were confirmed by mass spectrometric gas analysis of lysed oocytes, when an inhibitory effect on CA IX catalytic activity was found after the injection of 1?nM VD11-4-2. Moreover, VD11-4-2 inhibited CA activity in MDA-MB-231 cancer cells at nanomolar concentrations. This combination of high selectivity and potency renders VD11-4-2, an auspicious therapeutic drug for target-specific tumor therapy. 相似文献
14.
Effect of phytosterols on cholesterol metabolism and MAP kinase in MDA-MB-231 human breast cancer cells 总被引:4,自引:0,他引:4
Epidemiological studies suggest that dietary phytosterols may offer protection form some types of cancer including breast cancer. In an attempt to investigate the mechanism by which phytosterols offer this protection, we investigated the effect of the two most common dietary phytosterols, beta-sitosterol and campesterol, on the mevalonate and MAP Kinase (MAPK) pathways in MDA-MB-231 cells. These pathways play a role in cell growth and apoptosis. MDA-MB-231 cell line was used in this study since it is a hormone-insensitive tumor cell line which represents the majority of advanced breast cancer cases. Cells grown in the presence of 16 microM beta-sitosterol or campesterol for 3 days exhibited a 70% and 6% reduction in cell growth, respectively, while cholesterol treatment had no effect on growth as compared to the control. Studies investigating the effect of sterol supplementation on the relative and total sterol composition of cells, showed that cells supplemented with cholesterol contained 23% more cholesterol than the control. Cells supplemented with campesterol had almost one-half the cholesterol of controls but accumulated campesterol to account for 40% of the total sterols. In the case of cells supplemented with beta-sitosterol, cells had only 25% of their sterols as cholesterol and the rest was in the form of beta-sitosterol. All sterols tested equally inhibited de novo cholesterol synthesis using 14C-acetate as substrate. beta-Sitosterol supplemented cells had reduced cholesterol synthesis when using 3H-mevalonolactone as substrate, which suggests that the inhibition in this pathway is downstream of mevalonate where processes such as isoprenylation of proteins may take place. Mevalonate supplementation to cells treated with beta-sitosterol did not completely correct the observed growth inhibition by beta-sitosterol. There was no effect of sterols on the concentrations of both low (21-26 kDa) or high (44-74 kDa) molecular weight isoprenylated proteins in these cells. On the other hand, both the quantity and activity of MAPK was elevated in the cells supplemented with beta-sitosterol. These data suggest that the down regulation of cholesterol synthesis from mevalonate and stimulation of the MAPK pathway may play roles in the inhibition of MDA-MB-231 cell growth by beta-sitosterol. 相似文献
15.
Shunli Pan Xiaoxia Zhao Chen Shao Bingjie Fu Yingying Huang Ning Zhang Xiaojing Dou Zhe Zhang Yuling Qiu Ran Wang Meihua Jin Dexin Kong 《Cell death & disease》2021,12(1)
Cancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from -treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.Subject terms: SKF96365Tumour angiogenesis, Cancer microenvironment 相似文献
16.
17.
Qi Qi Na Lu Xiao-tang Wang Hong-yan Gu Yong Yang Wei Liu Chenglin Li Qi-dong You Qing-long Guo 《Biochimie et biologie cellulaire》2008,86(5):386-395
Gambogic acid (GA) has been known to have antitumor activity in vitro and in vivo. In the present study, we investigated the anti-invasive effects of GA in MDA-MB-231 human breast carcinoma cells. The results indicated that GA significantly inhibited the adhesion, migration, and invasion of the cells in vitro tested by the heterotypic adhesion assay, wound migration assay, and chamber invasion assay. Results of Western blotting and immunocytochemistry analysis showed that GA could suppress the expressions of matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) in MDA-MB-231 cells. Furthermore, gelatin zymography revealed that GA decreased the activities of MMP-2 and MMP-9. Additionally, GA exerted an inhibitory effect on the phosphorylation of ERK1/2 and JNK, while it had no effect on p38. Taken together, our results demonstrated the anti-invasive property of GA for the first time and indicated it could serve as a promising drug for the treatment of cancer metastasis. 相似文献
18.
19.
Arachidonic acid (AA) is a common dietary n-6 polyunsaturated fatty acid that is present in an esterified form in cell membrane phospholipids, and it might be present in the extracellular microenvironment. In particular, AA promotes MAPK activation and mediates the adhesion of MDA-MB-435 breast cancer cells to type IV collagen. However, the signal transduction pathways mediated by AA have not been studied in detail. Our results demonstrate that stimulation of MDA-MB-231 breast cancer cells with AA promotes an increase in the phoshorylation of Src and FAK, as revealed by site-specific antibodies that recognized the phosphorylation state of Src at Tyr-418, and of FAK at tyrosine-397 and in vitro kinase assays. In addition, AA also induces an increase in the migration of MDA-MB-231 cells. In contrast, AA does not induce phosphorylation of FAK and an increase in cell migration of non-tumorigenic epithelial cells MCF10A. Inhibition of Gi/Go proteins, LOX and Src activity prevent FAK activation and cell migration. In conclusion, our results demonstrate, for the first time, that Gi/Go proteins, LOX and Src play an important role in FAK activation and cell migration induced by AA in MDA-MB-231 breast cancer cells. 相似文献