首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biotransformation of nitriles by rhodococci   总被引:6,自引:0,他引:6  
Rhodococci have been shown to be capable of a very wide range of biotransformations. Of these, the conversion of nitriles into amides or carboxylic acids has been studied in great detail because of the biotechnological potential of such activities. Initial investigations used relatively simple aliphatic nitriles. These studies were quickly followed by the examination of the regio- and stereoselective properties of the enzymes involved, which has revealed the potential synthetic utility of rhodococcal nitrile biotransforming enzymes. Physiological studies on rhodococci have shown the importance of growth medium design and bioreactor operation for the maximal conversion of nitriles. This in turn has resulted in some truly remarkable biotransformation activities being obtained, which have been successfully exploited for commercial organic syntheses (e.g. acrylamide production from acrylonitrile).The two main types of enzyme involved in nitrile biotransformations by rhodococci are nitrile hydratases (amide synthesis) and nitrilases (carboxylic acid synthesis with no amide intermediate released). It is becoming clear that many rhodococci contain both activities and multiple forms of each enzyme, often induced in a complex way by nitrogen containing molecules. The genes for many nitrile-hydrolysing enzymes have been identified and sequenced. The crystal structure of one nitrile hydratase is now available and has revealed many interesting aspects of the enzyme structure in relationship to its catalytic activity and substrate selectivity.  相似文献   

2.
The fact that dietary compounds influence the susceptibility of human beings to cancer, is widely accepted. One of the possible mechanisms that is responsible for these (anti)carcinogenic effects is that dietary constituents may modulate biotransformation enzymes, thereby affecting the (anti)carcinogenic potential of other compounds. This ambiguous theme is the basis for the present paper. The possible effects of enzymatic bioactivation and detoxification of dietary constituents are discussed using two representative examples of phase I and phase II biotransformation enzymes i.e., cytochrome P450 and glutathione S-transferase. Furthermore, the impact of genetic polymorphisms of these two enzyme systems is considered. Although it is very difficult on the basis of the enzyme inducing or inhibiting properties of dietary compounds, especially to characterize them as anticarcinogenic, for certain constituents it is acknowledged that they have anticarcinogenic properties. As such, this provides for an important mechanistic substantiation of the established cancer chemopreventive effect of a diet rich in fruits and vegetables.  相似文献   

3.
Nitrile hydratase (NHase) was discovered in our laboratory. This enzyme was purified and characterized from various microorganisms. NHases are roughly classified into two groups according to the metal involved: Fe-type and Co-type. NHases are expected to have great potential as catalysts in organic chemical processing because they can convert nitriles to the corresponding higher-value amides under mild conditions. We have used microbial enzymes for the production of useful compounds; NHase has been used for the industrial production (production capacity: 30,000 tons/year) of acrylamide from acrylonitrile. This is the first successful example of a biotransformation process for the manufacture of a commodity chemical. This review summarizes the history of NHase studied not only from a basic standpoint but also from an applied point of view.  相似文献   

4.
The arrangement and type of support has a significant impact on the efficiency of immobilized enzymes. 1-dimensional fibrous materials can be one of the most desirable supports for enzyme immobilization. This is due to their high surface area to volume ratio, internal porosity, ease of handling, and high mechanical stability, all of which allow a higher enzyme loading, release and finally lead to better catalytic efficiency. Fortunately, the enzymes can reside inside individual nanofibers to remain encapsulated and retain their three-dimensional structure. These properties can protect the enzyme's tolerance against harsh conditions such as pH variations and high temperature, and this can probably enhance the enzyme's stability. This review article will discuss the immobilization of enzymes on synthetic polymers, which are fabricated into nanofibers by electrospinning. This technique is rapidly gaining popularity as one of the most practical ways to fibricate polymer, metal oxide, and composite micro or nanofibers. As a result, there is interest in using nanofibers to immobilize enzymes. Furthermore, present research on electrospun nanofibers for enzyme immobilization is primarily limited to the lab scale and industrial scale is still challanging. The primary future research objectives of this paper is to investigate the use of electrospun nanofibers for enzyme immobilization, which includes increasing yield to transfer biological products into commercial applications.  相似文献   

5.
A thermophilic Bacillus spp. capable of transforming aliphatic nitriles, cyclic nitriles and dinitriles was used as a free cell suspension and immobilized in alginate beads to study the utilization of acetonitrile and acrylonitrile in a buffered biotransformation medium. The cells grew optimally at 65 degrees C and contained a nitrile hydratase-amidase enzyme system that transformed nitrile compounds stoichiometrically to the corresponding carboxylic acids. In the presence of urea or chloroacetone, amidase activity was inhibited and the amide intermediate was accumulated. Mass transfer limitation of nitrile utilization rates was observed with immobilized cells, but the alginate afforded the cells some degree of additional thermal stability and potential advantage in re-use. In vitro inhibition of the partially purified amidase was confirmed and the use of whole cells of this organism in a continuous bioreactor to generate amide products from nitrile substrates was demonstrated.  相似文献   

6.
Microbial nitrilases are biocatalysts of interest and the enzyme produced using various inducers exhibits altered substrate specificity, which is of great interest in bioprocess development. The aim of the present study is to investigate the nitrilase-producing Alcaligenes faecalis MTCC 10757 (IICT-A3) for its ability to transform various nitriles in the presence of different inducers after optimization of various parameters for maximum enzyme production and activity. The production of A. faecalis MTCC 10757 (IICT-A3) nitrilase was optimum with glucose (1.0%), acrylonitrile (0.1%) at pH 7.0. The nitrilase activity of A. faecalis MTCC 10757 (IICT-A3) was optimum at 35 °C, pH 8.0 and the enzyme was stable up to 6 h at 50 °C. The nitrilase enzyme produced using different inducers was investigated for substrate specificity. The enzyme hydrolyzed aliphatic, heterocyclic and aromatic nitriles with different substitutions. Acrylonitrile was the most preferred substrate (~40 U) as well as inducer. Benzonitrile was hydrolyzed with almost twofold higher relative activity than acrylonitrile when it was used as an inducer. The versatile nitrilase-producing A. faecalis MTCC 10757 (IICT-A3) exhibits efficient conversion of both aliphatic and aromatic nitriles. The aromatic nitriles, which show not much or no affinity towards nitrilase from A. faecalis, are hydrolyzed effectively with this nitrilase-producing organism. Studies are in progress to exploit this organism for synthesis of industrially important compounds.  相似文献   

7.
Chemical modification of enzymes for enhanced functionality.   总被引:6,自引:0,他引:6  
The explosion in commercial and synthetic applications of enzymes has stimulated much of the interest in enhancing enzyme functionality and stability. Covalent chemical modification, the original method available for altering protein properties, has now re-emerged as a powerful complementary approach to site-directed mutagenesis and directed evolution for tailoring proteins and enzymes. Glutaraldehyde crosslinking of enzyme crystals and polyethylene glycol (PEG) modification of enzyme surface amino groups are practical methods to enhance biocatalyst stability. Whereas crosslinking of enzyme crystals generates easily recoverable insoluble biocatalysts, PEGylation increases solubility in organic solvents. Chemical modification has been exploited for the incorporation of cofactors onto protein templates and for atom replacement in order to generate new functionality, such as the conversion of a hydrolase into a peroxidase. Despite the breadth of applicability of chemically modified enzymes, a difficulty that has previously impeded their implementation is the lack of chemo- or regio-specificity of chemical modifications, which can yield heterogeneous and irreproducible product mixtures. This challenge has recently been addressed by the introduction of a unique position for modification by a site-directed mutation that can subsequently be chemically modified to introduce an unnatural amino acid sidechain in a highly chemo- and regio-specific manner.  相似文献   

8.
Industry has an increasing interest in the use of enzymes as environmentally friendly, highly efficient, and specific bio-catalysts. Enzymes have primarily evolved to function in aqueous environments at ambient temperature and pressure. These conditions however do not always correspond with industrial processes or applications, and only a small portion of all known enzymes are therefore suitable for industrial use. Protein engineering can sometimes be applied to convey more desirable properties to enzymes, such as increased stability, but is limited to the 20 naturally occurring amino acids or homologs thereof. Using post-production modification, which has the potential to combine desirable properties from the enzyme and the conjugated compounds, enzymes can be modified with both natural and synthetic molecules. This offers access to a myriad of possibilities for tuning the properties of enzymes. At this moment, however, the effects of post-production modification cannot yet be reliably predicted. The increasing number of applications will improve this so that the potential of this technology can be fully exploited. This review will focus on post-production modification of enzymes and its use and opportunities in industry.  相似文献   

9.
N-Tolylsulfonyl- and N-butyloxycarbonyl-protected β-amino nitriles were prepared to study the effect of the N-protecting group on the biotransformation of the β-amino nitriles to the corresponding β-amino amides and acids. The bioconversions were carried out by using whole cells of Rhodococcus sp. R312 and Rhodococcus erythropolis NCIMB 11540. The bioconversion products of five-membered carbocyclic nitriles were mainly the respective acids whereas the carbocyclic six-membered nitriles were accumulated at the stage of the amide. Benefits of the enzymatic compared with the chemical hydrolysis of β-amino nitriles are the mild reaction conditions for the transformation of the nitrile group in the presence of acid or base labile N-protecting groups. In the present work we concentrated on this chemoselectivity of the biotransformation rather than its potential enantioselectivity, which will be subject of future investigations. Thus, some new compounds were prepared: (±)-(2-cyano-cyclohexyl) carbamic acid tert-butyl ester (4a), (±)-(2-carbamoyl-cyclopentyl) carbamic acid tert-butyl ester (3b) and (±)-(2-carbamoyl-cyclohexyl) carbamic acid tert-butyl ester (4b).  相似文献   

10.
The tremendous potential of room temperature ionic liquids as an alternative to environmentally harmful ordinary organic solvents is well recognized. Ionic liquids, having no measurable vapor pressure, are an interesting class of tunable and designer solvents, and they have been used extensively in a wide range of applications including enzymatic biotransformation. In fact, ionic liquids can be designed with different cation and anion combinations, which allow the possibility of tailoring reaction solvents with specific desired properties, and these unconventional solvent properties of ionic liquids provide the opportunity to carry out many important biocatalytic reactions that are impossible in traditional solvents. As compared to those observed in conventional organic solvents, the use of enzymes in ionic liquids has presented many advantages such as high conversion rates, high enantioselectivity, better enzyme stability, as well as better recoverability and recyclability. To date, a wide range of pronounced approaches have been taken to further improve the performance of enzymes in ionic liquids. This review presents the recent technological developments in which the advantages of ionic liquids as a medium for enzymes have been gradually realized.  相似文献   

11.
Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant–insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium‐labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore‐induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores.  相似文献   

12.
1. Reported LC50s of hundreds of chemicals and data of many enzymes in many fishes have been reviewed in order to find the hypothesized influence of biotransformation on acute toxicity. 2. Biotransformation of carbaryl was correlated and biotransformation of endrin was inversely correlated with acute toxicity. 3. For most compounds no correlation was found which indicates that either biotransformation is not important in acute toxicity or enzyme activities are not representative parameters to quantify biotransformation reactions.  相似文献   

13.
Biotransformation in fish--as in mammals--is catalyzed by several enzymes. These convert liposoluble endogenous and exogenous substrates to more water-soluble compounds prior to excretion. The biotransformation enzymes are induced by environmental pollutants. The induction can be expected to precede the onset of more serious changes at higher organization levels. We have studied the effect of petroleum from a ship spill and bleached kraft mill effluent on hepatic biotransformation enzyme activities of local fish species perch (Perca fluviatilis) and vedace (Coregonus albula) in Finland. Four months after the petroleum spill an elevated level of monoxygenase as well as glutathione S-transferase enzyme activities was seen in perch. Afterwards the difference between the control perch and the exposed ones disappeared. Bleached kraft mill effluent had effect on hepatic biotransformation in vendace. Increasing exposure time and effluent concentration elevated the activities.  相似文献   

14.
In the course of preparing aryl azide derivatives for use as photoprobes, we have observed significant light sensitivity in the precursor aryl diazonium compounds. The photosensitive properties of this class of compounds are of interest since they will seek out cationic binding sites in biological targets, and can be employed to inhibit complementary targets at acid pH. The relationship between photolytic change in the structure of diazonium compounds and the corresponding change in function of a biological target are presented. Experiments are described in which the dark and light sensitive properties of a model diazonium compound, diazobenzene sulfonate (DBS), were determined. The ultraviolet spectra were used to evaluate the dark stability and light sensitivity of DBS. Chymotrypsin and trypsin served as functioning targets for further evaluation of the photochemical properties. Both enzymes are stable to the probe in the dark at acid pH. A rapid loss of enzyme activity was observed following flash photolysis of DBS-enzyme solutions. Photolytic incorporation of radioactive DBS into chymotrypsin was observed. Aryl diazonium salts can be employed to probe the availability of complementary sites in biological targets at different acid pH values.  相似文献   

15.
Monocyclic phenols and catechols are important antioxidant compounds for the food and pharmaceutic industries; their production through biotransformation of low-added value starting compounds is of major biotechnological interest. The toluene o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 is a bacterial multicomponent monooxygenase (BMM) that is able to hydroxylate a wide array of aromatic compounds and has already proven to be a versatile biochemical tool to produce mono- and dihydroxylated derivatives of aromatic compounds. The molecular determinants of its regioselectivity and substrate specificity have been thoroughly investigated, and a computational strategy has been developed which allows designing mutants able to hydroxylate non-natural substrates of this enzyme to obtain high-added value compounds of commercial interest. In this work, we have investigated the use of recombinant ToMO, expressed in cells of Escherichia coli strain JM109, for the biotransformation of non-natural substrates of this enzyme such as 2-phenoxyethanol, phthalan and 2-indanol to produce six hydroxylated derivatives. The hydroxylated products obtained were identified, isolated and their antioxidant potential was assessed both in vitro, using the DPPH assay, and on the rat cardiomyoblast cell line H9c2. Incubation of H9c2 cells with the hydroxylated compounds obtained from ToMO-catalyzed biotransformation induced a differential protective effect towards a mild oxidative stress induced by the presence of sodium arsenite. The results obtained confirm once again the versatility of the ToMO system for oxyfunctionalization reactions of biotechnological importance. Moreover, the hydroxylated derivatives obtained possess an interesting antioxidant potential that encourages the use of the enzyme for further functionalization reactions and their possible use as scaffolds to design novel bioactive molecules.  相似文献   

16.
Lipases (triacylglycerol ester hydrolases, EC 3.1.1.3) are ubiquitous enzymes that catalyze the breakdown of fats and oils with subsequent release of free fatty acids, diacylglycerols, monoglycerols and glycerol. Besides this, they are also efficient in various reactions such as esterification, transesterification and aminolysis in organic solvents. Therefore, those enzymes are nowadays extensively studied for their potential industrial applications. Examples in the literature are numerous concerning their use in different fields such as resolution of racemic mixtures, synthesis of new surfactants and pharmaceuticals, oils and fats bioconversion and detergency applications. However, the drawbacks of the extensive use of lipases (and biocatalysts in general) compared to classical chemical catalysts can be found in the relatively low stability of enzyme in their native state as well as their prohibitive cost. Consequently, there is a great interest in methods trying to develop competitive biocatalysts for industrial applications by improvement of their catalytic properties such as activity, stability (pH or temperature range) or recycling capacity. Such improvement can be carried out by chemical, physical or genetical modifications of the native enzyme. The present review will survey the different procedures that have been developed to enhance the properties of lipases. It will first focus on the physical modifications of the biocatalysts by adsorption on a carrier material, entrapment or microencapsulation. Chemical modifications and methods such as modification of amino acids residues, covalent coupling to a water-insoluble material, or formation of cross-linked lipase matrix, will also be reviewed. Finally, new and promising methods of lipases modifications by genetic engineering will be discussed.  相似文献   

17.
A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.  相似文献   

18.
Aldoxime–nitrile pathway is one of the important routes of carbon and nitrogen metabolism in many life forms and a key interface for plant–microbe interactions. This pathway starts with transformation of amino acids to aldoximes, which are converted to nitriles and the later are ultimately hydrolyzed to acids and ammonia. Understanding and engineering of the enzymes involved in this pathway viz. cytochrome P450/CYP79, aldoxime dehydratase, nitrilase, nitrile hydratase, amidase and hydroxynitrile lyase, presents unprecedented opportunities in biocatalysis and green chemistry. Co-expressing these enzymes in prokaryotic and eukaryotic microbial hosts and tailoring their properties i.e. activity, specificity, stability and enantioselectivity may lead to develop sustainable bioprocesses for the synthesis of industrially important nitriles, amides and acids.  相似文献   

19.
Agrobacterium rhizogenes induced hairy root cultures are entering into a new juncture of functional research in generating pharmaceutical lead compounds by bringing about chemical transformations aided through its inherent enzyme resources. Rational utilization of hairy root cultures as highly effective biotransformation systems has come into existence in the last twenty years involving a wide range of plant systems as well as exogenous substrates and diverse chemical reactions. To date, hairy root cultures are preferred over plant cell/callus and suspension cultures as biocatalyst due to their genetic/biochemical stability, hormone-autotrophy, multi-enzyme biosynthetic potential mimicking that of the parent plants and relatively low-cost cultural requirements. The resultant biotransformed molecules, that are difficult to make by synthetic organic chemistry, can unearth notable practical efficacies by acquiring improved physico-chemical properties, bioavailability, lower toxicity and broader therapeutic properties. The present review summarizes the overall reported advances made in the area of hairy root mediated biotransformation of exogenous substrates with regard to their reaction types, plant systems associated, bacterial strains/molecules involved and final product recovery.  相似文献   

20.
Summary TheBrevibacterium sp. R 312 strain possesses a nitrile-hydratase and an amidase, both with a wide substrate spectrum. These two enzymes can be used for the bioconversion of nitriles into the corresponding organic acids: the actions of three types of compounds (nitriles, amides and acids) on the activity of the amidase are reported in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号