首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanogenesis from ethanol by defined mixed continuous cultures was studied. Under sulfate-free conditions, a Desulfovibrio strain was used as the ethanol-degrading species producing acetic acid and hydrogen. In a two-membered mutualistic coculture, the hydrogen was converted to methane by a Methanobacterium sp. and pH was maintained at neutrality by the addition of alkali. Introduction of a third species, the acetate-utilizing Methanosarcina mazei, obviated the need for external pH control. Methanogenesis by the co-and triculture was studied at various dilution rates in the steady state. The mutualistic coculture performed like a composite single species, as predicted from the theory of mutualistic interactions. Coupling between the mutualistic coculture and the acetate-utilizing methanogen was less tight. Increasing the dilution rate destabilized the triculture; at low dilution rates, instability was soon recovered, but at higher dilution rates imbalance between the rates of production and removal of acetic acid led to a drop in pH. Flocs formed in the triculture. An annulus of the Methanobacterium sp. and Desulfovibrio sp. was retained around the Methanosarcina sp. by strands of material probably derived from the Methanosarcina sp.  相似文献   

2.
Interspecies hydrogen transfer was studied in Desulfovibrio vulgaris-Methanosarcina barkeri mixed cultures. Experiments were performed under batch and continuous growth culture conditions. Lactate or pyruvate was used as an energy source. In batch culture and after 30 days of simultaneous incubation, these organisms were found to yield 1.5 mol of methane and 1.5 mol of carbon dioxide per mol of lactate fermented. When M. barkeri served as the hydrogen acceptor, growth yields of D. vulgaris were higher compared with those obtained on pyruvate without any electron acceptor other than protons. In continuous culture, all of the carbon derived from the oxidation of lactate was recovered as methane and carbon dioxide, provided the dilution rate was minimal. Increasing the dilution rate induced a gradual accumulation of acetate, causing acetate metabolism to cease at above μ = 0.05 h−1. Under these conditions all of the methane produced originated from carbon dioxide. The growth yields of D. vulgaris were measured when sulfate or M. barkeri was the electron acceptor. Two key observations resulted from the present study. First, although sulfate was substituted by M. barkeri, metabolism of D. vulgaris was only slightly modified. The coculture-fermented lactate produced equimolar quantities of carbon dioxide and methane. Second, acetogenesis and methane formation from acetate were completely separable.  相似文献   

3.
4.
5.
Biological hydrogen (H2) production by dark and photo-fermentative organisms is a promising area of research for generating bioenergy. A large number of organisms have been widely studied for producing H2 from diverse feeds, both as pure and as mixed cultures. However, their H2 producing efficiencies have been found to vary (from 3 to 8 mol/mol hexose) with physiological conditions, type of organisms and composition of feed (starchy waste from sweet potato, wheat, cassava and algal biomass). The present review deals with the possibilities of enhancing H2 production by integrating metabolic pathways of different organisms-dark fermentative bacteria (from cattle dung, activated sludge, Caldicellulosiruptor, Clostridium, Enterobacter, Lactobacillus, and Vibrio) and photo-fermentative bacteria (such as Rhodobacter, Rhodobium and Rhodopseudomonas). The emphasis has been laid on systems which are driven by undefined dark-fermentative cultures in combination with pure photo-fermentative bacterial cultures using biowaste as feed. Such an integrative approach may prove suitable for commercial applications on a large scale.  相似文献   

6.
Biochemistry (Moscow) - Light-dependent hydrogen production by microalgae attracts attention of researchers because of the potential practical application. It is generally recognized that...  相似文献   

7.
8.
Biological hydrogen (H2) production enhancement through the use of nanoparticles (NPs) supplement in the media is being recognized as a promising approach. The NPs, including those of metal and metal oxides have shown a significant improvement in the BHP. A number of organisms as pure or mixed cultures can produce H2 in presence of NPs from pure sugars and biowaste as a feed. However, their H2 production efficiencies have been found to vary significantly with the type of NPs and their concentration. In this review article, the potential role of NPs in the enhancement of H2 production has been assessed in dark- and photo-fermentative organisms using sugars and biowaste materials as feed. Further, the integrative approaches for commercial applications of NPs in BHP have been discussed.  相似文献   

9.
将采自天津潮间带的污泥进行热休克处理,厌氧条件下富集混合菌群进行产氢试验。混合菌群分别接种于含葡萄糖、蔗糖、乳糖、淀粉和蛋白胨的培养液中,测定不同底物培养条件下混合菌群产氢量及菌群组成。结果表明,以蔗糖为底物时,混合菌群产氢量最高,为(787±24)mL/L;混合菌群以葡糖糖、乳糖和淀粉为底物时,产氢量依次为(530±20)、(46±5)和(455±35)mL/L;混合菌群不能利用蛋白胨为底物产氢。变性梯度凝胶电泳(DGGE)分析不同底物培养条件下的产氢混合菌群组成。混合菌群16S rRNA基因的DGGE分离结果表明,在蛋白胨培养条件下,混合菌群没有能够形成优势菌,其他底物培养时,混合菌群的优势菌是Clostridium sp.。  相似文献   

10.
The study investigated the use of hollow-fiber membranes for hydrogen (H2) delivery to support the biological reductive dechlorination of tetrachloroethene (PCE) Two experiments were performed in which H2 was supplied through membranes placed in stirred batch reactors containing a mixed methanogenic/dechlorinating culture and PCE (≤10?µM. Reductive dechlorination of PCE to cis-dichloroethene was sustained in the reactors receiving H2 (1% H2 and 50% H2), while negligible dechlorination was observed in control reactors (100% N2). The 1%-H2-fed reactor outperformed the 50%-H2-fed reactor in the first experiment. However, the dechlorinating performance in the two reactors was similar in the second experiment. Despite relatively high H2 concentrations (4.6 to 178?µM) that led to H2 consumption (and CH4 production) by methanogens, dechlorination was effectively maintained for the duration of the experiments (35 to 62 days). The results of this study are significant in that dechlorination was sustained in a minimal medium by membrane-delivered H2. Dechlorination was also maintained at aqueous H2 concentrations that exceeded the thermodynamic thresholds for not only dechlorination (<0.1 to 2?nM, but also methanogenesis (~10?nM) and homoacetogenesis (94 to 400?nM. The results of these experiments suggest that membranes are a promising H2 delivery technology for stimulating the bioremediation of chlorinated ethene-contaminated aquifers.  相似文献   

11.
The precipitation of cadmium sulfide nanoparticles is induced on the surface of Escherichia coli , and the biological hydrogen production efficiency under visible light (VL) irradiation is investigated. When endogenous [Ni–Fe]‐hydrogenase is anaerobically induced, an additional 400 µmol of hydrogen gas is generated within 3 h from the hybrid system suspension (50 mL) under VL irradiation (2000 W m?2), corresponding to an increase in hydrogen production of ≈30%. The apparent quantum efficiencies of the hybrid system under 470 and 620 nm VL irradiation are 7.93% and 9.59%, respectively, which are higher than those of many photoheterotrophic bacteria. Furthermore, the mechanism of the enhanced hydrogen evolution is investigated. The interaction between photogenerated electrons and cells of E. coli is confirmed by heat‐treatment, electron‐scavenger, and separation studies. The acceleration of pyruvate generation, inhibition of lactate fermentation, increase of formate concentration, stimulation of hydrogenase activity, and elevation of nicotinamide adenine dinucleotide (NAD)H/NAD ratio in the hybrid system are responsible for the enhanced hydrogen production. A feasibility study is also conducted using wastewater and natural sunlight for the hydrogen production by the hybrid system. An additional 120 µmol of hydrogen is generated from the hybrid system within 3 h under these conditions using natural resources.  相似文献   

12.
Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK) inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC50 1–2 pM). The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.  相似文献   

13.
生物制氢的现状与发展趋势   总被引:7,自引:0,他引:7  
氢能是一种理想的能源。生物制氢技术在氢能的研究和开发中占着非常重要的位置。该文介绍了生物制氢的方法和机理,综述了国内外生物制氢的现状和发展趋势并提出了作者的看法。  相似文献   

14.
汤桂兰  孙振钧 《生物技术》2007,17(1):93-97,F0004
氢是一种理想的清洁能源,生物制氢是在新能源的研究利用中占有日趋重要的位置。该文综述了国内外光合产氢和发酵产氢的机理、研究现状及存在的问题,并对其进一步发展进行了分析和展望。  相似文献   

15.
生物制氢技术的研究进展   总被引:32,自引:0,他引:32  
氢是一种理想的清洁能源 ,生物制氢在新能源的研究利用中占有日趋重要的位置。目前采用的生物制氢技术成本较高 ,使用价格低廉、来源丰富的原料是降低其成本的一条重要途径 ,利用生物质 ,尤其是纤维素类物质制氢是新的发展方向。综述了与微生物制氢有关的酶的作用机制 ,相关菌类的产氢机理及研究进展。  相似文献   

16.
17.
简要论述了工业制氢的常用方法及各自的优缺点。基于目前国际上的最新研究动向,重点就超临界水催化汽化生物质制氢技术的研究现状进行了归纳和综述。认为超临界水催化生物质制氢技术具有环境友好、资源可再生以及效率高等技术优势,具有良好开发前景,应该予以重视。重点讨论了目前研究工作所取得的成果、面临的主要技术问题和可能的解决途径,指出了未来的重点研究方向。  相似文献   

18.
Summary Growth curve data consist of repeated measurements of a continuous growth process over time in a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diffusion process has no explicit form, we propose to approximate it using the Euler–Maruyama scheme. Finally, we suggest validating the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chicken growth, the modeling being improved by the SDE approach.  相似文献   

19.
光合细菌(PSB)生物产氢技术能够将光能利用、氢能制备和废水中有机物的去除有效地结合在一起,是一种极具发展潜力的氢能生产技术。分析了PSB利用废水生物产氢的机制与具有产氢活性的代表性PSB,总结了PSB生物产氢主要影响因素与技术,指出目前该项研究存在的问题,并对其应用前景进行了评述。  相似文献   

20.
Normal roots of Capsicum frutescens were excised from tissue-cultured plants into half strength Murashige and Skoog's medium with 2.23 μM naphthalene acetic acid. Maximum growth of cultured roots was 6.5 g fresh weight 40 ml-1, as recorded on day 20. Even though normal roots were unable to accumulate capsaicin, they contained other phenylpropanoid intermediates and vanillylamine, as detected by HPLC analysis. Normal roots of Capsicum frutescens were treated with ferulic acid and protocatechuic aldehyde in order to study their biotransformation ability. Ferulic acid, which is the nearest precursor to vanillin, when fed at concentrations of 1 and 2 mM led to the accumulation of vanilla flavour metabolites, vanillin being the major one. In cultures treated with 1 and 2 mM ferulic acid, maximum vanillin accumulation of 12.3 and 16.4 μM was observed, on day 6 after precursor addition, respectively. Feeding of ferulic acid and β-cyclodextrin complex (2 mM each) enhanced the accumulation of biotransformed products. Moreover, vanillin accumulation was recorded as 24.7 μM on day 6 after precursor addition, which was 1.5 times higher than in cultures fed with ferulic acid (2 mM) alone. When ferulic acid was fed along with β-cyclodextrin (1 mM each) to cultures growing in a three-litre bubble column bioreactor, the maximum vanillin production of 10.7 μM was obtained; other vanilla flavour metabolites were also formed after 9 days of precursor addition. Root cultures could also biotransform protocatechuic aldehyde wherein a maximum vanillin production of 7.9 μM was recorded on day 6 after precursor addition. The bioconversion efficiency was observed to be 5-7% in case of ferulic acid fed cultures and 3.2% in case of protocatechuic aldehyde fed cultures suggesting the possible channelling of precursors to alternate biosynthetic pathways such as lignin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号