首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Matrix metalloproteinase (MMP) family proteins play diverse roles in many aspects of cellular processes such as osteoblastic differentiation. Besides, mechanical forces that occur in 3D collagen gel promote the osteoblastic phenotype and accelerate matrix mineralization. Although MMPs have been involved in bone differentiation, the proteolytic cascades triggered by mechanical forces are still not well characterized. In this study, we have investigated the contribution of both proteolytic cascades, MMP-3/MMP-1 and MMP-2/MMP-13/MT1-MMP in the differentiation of human osteoblasts cultured in a floating type I collagen lattice (FL) versus an attached collagen lattice (AL). Compared to AL, contraction of human osteoblasts-populated FL led to a fast (1 day) induction of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteoprotegerin (OPG), and Runx-2 expression. At day 4, osteocalcin (OC) overexpression preceded the formation of calcium-containing nodule formation as assessed by X-ray analyses. MMP-1 and MMP-3 were produced to similar extent by cells cultured in FL and AL, whereas contraction of collagen lattices triggered both mRNA overexpression of MMP-2, MMP-13, and MT1-MMP (i.e., MMP-14), and their activation as evidenced by Western blotting or zymographic analyses. Down-regulating MT1-MMP expression or activity either by siRNA transfection or supplementation of culture medium with TIMP-1 or TIMP-2 highlighted the contribution of that enzyme in OC, ALP, and OPG expression. MMP-2 and MMP-13 were more directly involved in BSP expression. So, these results suggest that the main proteolytic cascade, MMP-2/MMP-13/MT1-MMP, and more particularly, its initial regulator MT1-MMP is involved in osteoblast differentiation through mechanical forces.  相似文献   

2.
MT1-MMP/MMP-14 is a major invasion-promoting membrane protease expressed in macrophages. In addition to its proteolytic activity that degrades the extracellular matrix, MT1-MMP also boosts ATP production in cells in a manner independent of its proteolytic activity. It remains unclear to what extent the proteolytic and energy-boosting activities of MT1-MMP contribute to macrophage invasion. Recently, we demonstrated that the cytoplasmic tail of MT1-MMP makes use of APBA3/Mint3 to activate HIF-1 and thereby boosts glycolysis for ATP production. Here, we used Apba3−/− macrophages to dissect the contribution of the proteolytic and the energy-boosting activities of MT1-MMP. The proteolytic activity of MT1-MMP was not affected by the lack of APBA3 in macrophages. Apba3−/− and Mmp14−/− macrophages exhibited a 55% reduction of ATP levels compared to wild-type (WT) cells and the rate of motility of the mutant cells was accordingly reduced. In contrast, matrigel invasion by Mmp14−/− and Apba3−/− macrophages was reduced to 24% and 55.4%, respectively, of the level observed in WT cells. These results represent the first attempt to dissect the contribution of the two invasion-promoting activities of MT1-MMP to macrophage invasion.  相似文献   

3.
Pleural malignant mesothelioma is a locally aggressive tumor of mesothelial cell origin. In other tumor types high expression of matrix metalloproteinase (MMP)-2, together with membrane-type1-MMP (MT1-MMP), and low levels of the tissue inhibitor of MMP (TIMP)-2 have been correlated with aggressive tumor progression and low survival rates. Therefore, we compared the expression and activation of these three factors and their regulation by two mesothelioma associated growth factors, platelet-derived growth factor (PDGF)-BB, and transforming growth factor (TGF)-beta1 in six human mesothelioma and one mesothelial cell line. Polymerase chain reaction (PCR), immunoblotting, zymography, and small inhibitory RNAs (siRNA) were used to study gene expression, protein activation, and signal transduction. To proof the relevance of our in vitro data immunohistochemistry was performed in tissue sections. PDGF-BB induced, while TGF-beta1 inhibited cell proliferation. PDGF-BB was a chemoattractant for mesothelial cells, and its effect was increased in the presence of TGF-beta1. TGF-beta1 stimulated the de novo synthesis of pro-MMP-2 in both cell types. Pro-MMP-2 synthesis involved p38 MAP kinase. In cell culture and tissue sections only mesothelial cells expressed MT1-MMP. Migration of mesothelioma cells was dependent on the presence of MT1-MMP. Migration, but not proliferation of mesothelioma cells was inhibited by oleoyl-N-hydroxylamide, TIMP-2, and siRNA for MT1-MMP. Our data suggest that in mesothelioma cells the phosphorylation of p38 MAP kinase is deregulated and is involved in pro-MMP-2 expression. Mesothelioma progression depends on an interaction with mesothelial cells that provide MT1-MMP necessary to activate pro-MMP-2 to facilitate migration through an extracellular matrix (ECM) layer.  相似文献   

4.
MMP-9 (gelatinase B) is produced in a latent form (pro-MMP-9) that requires activation to achieve catalytic activity. Previously, we showed that MMP-2 (gelatinase A) is an activator of pro-MMP-9 in solution. However, in cultured cells pro-MMP-9 remains in a latent form even in the presence of MMP-2. Since pro-MMP-2 is activated on the cell surface by MT1-MMP in a process that requires TIMP-2, we investigated the role of the MT1-MMP/MMP-2 axis and TIMPs in mediating pro-MMP-9 activation. Full pro-MMP-9 activation was accomplished via a cascade of zymogen activation initiated by MT1-MMP and mediated by MMP-2 in a process that is tightly regulated by TIMPs. We show that TIMP-2 by regulating pro-MMP-2 activation can also act as a positive regulator of pro-MMP-9 activation. Also, activation of pro-MMP-9 by MMP-2 or MMP-3 was more efficient in the presence of purified plasma membrane fractions than activation in a soluble phase or in live cells, suggesting that concentration of pro-MMP-9 in the pericellular space may favor activation and catalytic competence.  相似文献   

5.
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is essential for tumor invasion and growth. We show here that MT1-MMP induces extracellular signal-regulated kinase (ERK) activation in cancer cells cultured in collagen gel, which is indispensable for their proliferation. Inhibition of MT1-MMP by MMP inhibitor or small interfering RNA suppressed activation of focal adhesion kinase (FAK) and ERK in MT1-MMP-expressing cancer cells, which resulted in up-regulation of p21WAF1 and suppression of cell growth in collagen gel. Cell proliferation was also abrogated by the inhibitor against ERK pathway without affecting FAK phosphorylation. MT1-MMP and integrin αvβ3 were shown to be involved in c-Src activation, which induced FAK and ERK activation in collagen gel. These MT1-MMP-mediated signal transductions were paxillin dependent, as knockdown of paxillin reduced cell growth and ERK activation, and co-expression of MT1-MMP with paxillin induced ERK activation. The results suggest that MT1-MMP contributes to proliferation of cancer cells in the extracellular matrix by activating ERK through c-Src and paxillin.  相似文献   

6.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.  相似文献   

7.
Receptors and their regulatory peptides are aberrantly expressed in tumors, suggesting a potential tumor therapy target. Human hemokinin-1 (hHK-1) is a tachykinin peptide ligand of the neurokinin-1 (NK1) receptor which is overexpressed in melanoma and other tumor tissues. Here, we investigated the role of hHK-1 and the NK1 receptor in melanoma cell migration. NK1 receptor expression was associated with melanoma metastatic potential. Treatment with hHK-1 significantly enhanced A375 and B16F10 melanoma cell migration and an NK1 receptor antagonist L732138 blocked this effect. MMP-2 and MT1-MMP expression were up-regulated in hHK-1-treated melanoma cells and cell signaling data suggested that hHK-1 induced phosphorylation of ERK1/2, JNK and p38 by way of PKC or PKA. Kinase activation led to increased MMP-2 and MT1-MMP expression and melanoma cell migration induced by hHK-1. Thus, hHK-1 and the NK1 receptor are critical to melanoma cell migration and each may be a promising chemotherapeutic target.  相似文献   

8.
Itoh Y 《IUBMB life》2006,58(10):589-596
Controlled cell migration is a fundamental and critical event in many physiological processes. However once control is lost, cell migration facilitates disease progression such as seen in cancer metastasis, atherosclerosis, and rheumatoid arthritis. One of the critical proteinases involved in cell migration is membrane-type 1 matrix metalloproteinase (MT1-MMP/MMP-14). MT1-MMP degrades extracellular matrix to make a path for cells to migrate, sheds cell surface molecules to give migratory signals, and activates ERK (extracellular signal-regulated protein kinase) enhancing cell migration. For MT1-MMP to promote cell migration, it needs to act in co-ordination with other cell migration machinery. Understanding such regulatory links may provide insights into the development of novel disease therapies.  相似文献   

9.
Lin Y  Chang G  Wang J  Jin W  Wang L  Li H  Ma L  Li Q  Pang T 《Experimental cell research》2011,(14):2031-2040
Na+/H+ exchanger 1 (NHE1), an important regulator of intracellular pH (pHi) and extracellular pH (pHe), has been shown to play a key role in breast cancer metastasis. However, the exact mechanism by which NHE1 mediates breast cancer metastasis is not yet well known. We showed here that inhibition of NHE1 activity, with specific inhibitor Cariporide, could suppress MDA-MB-231 cells invasion as well as the activity and expression of MT1-MMP. Overexpression of MT1-MMP resulted in a distinguished increase in MDA-MB-231 cells invasiveness, but treatment with Cariporide reversed the MT1-MMP-mediated enhanced invasiveness. To explore the role of MAPK signaling pathways in NHE1-mediated breast cancer metastasis, we compared the difference of constitutively phosphorylated ERK1/2, p38 MAPK and JNK in non-invasive MCF-7 cells and invasive MDA-MB-231cells. Interestingly, we found that the phosphorylation levels of ERK1/2 and p38 MAPK in MDA-MB-231 cells were higher than in MCF-7 cells, but both MCF-7 cells and MDA-MB-231 cells expressed similar constitutively phosphorylated JNK. Treating MDA-MB-231 cells with Cariporide led to decreased phosphorylation level of both p38 MAPK and ERK1/2 in a time-dependent manner, but JNK activity was not influenced. Supplementation with MAPK inhibitor (MEK inhibitor PD98059, p38 MAPK inhibitor SB203580 and JNK inhibitor SP600125) or Cariporide all exhibited significant depression of MDA-MB-231 cells invasion and MT1-MMP expression. Furthermore, we co-treated MDA-MB-231 cells with MAPK inhibitor and Cariporide. The result showed that Cariporide synergistically suppressed invasion and MT1-MMP expression with MEK inhibitor and p38 MAPK inhibitor, but not be synergistic with the JNK inhibitor. These findings suggest that NHE1 mediates MDA-MB-231 cells invasion partly through regulating MT1-MMP in ERK1/2 and p38 MAPK signaling pathways dependent manner.  相似文献   

10.
The DNA enzyme Dz13, targeted against the oncogene c-Jun, is capable of inhibiting various model tumours in mice albeit in ectopic models of neoplasia. In previous studies using orthotopic models of disease, the inhibitory effects of Dz13 on secondary growth was a direct result of growth inhibition at the primary lesion site. Thus, the direct and genuine effects on metastasis were not gauged. In this study, Dz13 was able to inhibit both locoregional and distal metastasis of tumour cells in mice, in studies where the primary tumours were unaffected due to the late and clinically-mimicking nature of treatment commencement. In addition, the effect of Dz13 against tumours has now been extended to encompass breast and prostate cancer. Dz13 upregulated the matrix metalloproteinase (MMP)-2 and MMP-9, and decreased expression of MT1-MMP (MMP-14) in cultured tumour cells. However, in sections of ectopic tumours treated with Dz13, both MMP-2 and MMP-9 were downregulated. Thus, not only is Dz13 able to inhibit tumour growth at the primary site, but also able to decrease the ability of neoplastic cells to metastasise. These findings further highlight the growing potential of Dz13 as an antineoplastic agent.  相似文献   

11.
12.
Structural manipulation of the pharmacophoric model of type A selective MMP inhibitors (MMPi), obtained by the insertion of some alkyl substituents R2 possessing an appropriate geometry, steric bulkiness and lipophilicity, is able to improve potency, in the subnanomolar range on MMP-2, and to give a good MMP inhibition on MMP-14 (MT1-MMP) in the designed MMPi of type C, while maintaining a good MMP-1/MMP-2 selectivity profile. The simultaneous inhibition of these two enzymes yields type C compounds, which are potent antiangiogenic agents, able to block a chemoinvasion model on HUVEC cells in the micromolar range.  相似文献   

13.
Laminin-5 (Ln-5) is an extracellular matrix substrate for cell adhesion and migration, which is found in many epithelial basement membranes. Mechanisms eliciting migration on Ln-5 need to be elucidated because of their relevance to tissue remodeling and cancer metastasis. We showed that exogenous addition of activated matrix metalloprotease (MMP) 2 stimulates migration onto Ln-5 in breast epithelial cells via cleavage of the gamma2 subunit. To investigate the biological scope of this proteolytic mechanism, we tested a panel of cells, including colon and breast carcinomas, hepatomas, and immortalized hepatocytes, selected because they migrated or scattered constitutively in the presence of Ln-5. We found that constitutive migration was inhibited by BB94 or TIMPs, known inhibitors of MMPs. Limited profiling by gelatin zymography and Western blotting indicated that the ability to constitutively migrate on Ln-5 correlated with expression of plasma membrane bound MT1-MMP metalloprotease, rather than secretion of MMP2, since MMP2 was not produced by three cell lines (one breast and two colon carcinomas) that constitutively migrated on Ln-5. Moreover, migration on Ln-5 was reduced by MT1-MMP antisense oligonucleotides both in MMP2+ and MMP2- cell lines. MT1-MMP directly cleaved Ln-5, with a pattern similar to that of MMP2. The hemopexin-like domain of MMP2, which interferes with MMP2 activation, reduced Ln-5 migration in MT1-MMP+, MMP2+ cells, but not in MT1-MMP+, MMP2- cells. These results suggest a model whereby expression of MT1-MMP is the primary trigger for migration over Ln-5, whereas MMP2, which is activated by MT1-MMP, may play an ancillary role, perhaps by amplifying the MT1-MMP effects. Codistribution of MT1-MMP with Ln-5 in colon and breast cancer tissue specimens suggested a role for this mechanism in invasion. Thus, Ln-5 cleavage by MMPs may be a widespread mechanism that triggers migration in cells contacting epithelial basement membranes.  相似文献   

14.
目的探讨钙周期素结合蛋白(calcyclin binding protein/Siah-1-interacting protein, CacyBP/SIP)对胃癌细胞侵袭迁移的影响和潜在机制。方法采用免疫组织化学和Western blot方法检测不同T分期胃癌组织中CacyBP/SIP水平;Western blot检测胃癌细胞中CacyBP/SIP水平;MKN-45细胞转染si-CacyBP/SIP与Ad-CacyBP/SIP后,细胞划痕实验检测细胞迁移情况,Transwell细胞侵袭实验检测细胞侵袭情况,Western blot检测MMP-2、MMP-9和p-ERK1/2、p-AKT水平。结果 CacyBP/SIP在胃癌组织和胃癌细胞中高表达;胃癌组织中CacyBP/SIP表达水平与T分期呈正相关;敲减CacyBP/SIP抑制MKN-45细胞的迁移侵袭能力和MMP-2、MMP-9、p-ERK1/2、p-AKT蛋白表达水平;过表达CacyBP/SIP促进MKN-45细胞迁移侵袭能力和MMP-2、MMP-9、p-ERK1/2、p-AKT蛋白表达水平。结论 CacyBP/SIP对胃癌转移侵袭能力的促进作用可能与其上调MMP-2、MMP-9、p-ERK1/2、p-AKT水平有关。  相似文献   

15.
MT1-MMP (membrane type 1-matrix metalloproteinase) plays important roles in cell growth and tumor invasion via mediating cleavage of MMP2/gelatinase A and a variety of substrates including type I collagen. BST-2 (bone marrow stromal cell antigen 2) is a membrane tetherin whose expression dramatically reduces the release of a broad range of enveloped viruses including HIV from infected cells. In this study, we provided evidence that both transient and IFN-α induced BST-2 could decrease the activity of MMP2 via binding to cellular MT1-MMP on its C-terminus and inhibiting its proteolytic activity; and finally block cell growth and migration. Zymography gel and Western blot experiments demonstrated that BST-2 decreased MMP2 activity, but no effect on the expression of MMP2 and MT1-MMP genes. Confocal and immunoprecipitation data showed that BST-2 co-localized and interacted with MT1-MMP. This interaction inhibited the proteolytic enzyme activity of MT1-MMP, and blocked the activation of proMMP2. Experimental results of C-terminus deletion mutant of MT1-MMP showed that activity of MMP2 was no change and also no interaction existed between the mutant and BST-2 after co-transfection with the mutant and BST-2. It meant that C-terminus of MT1-MMP played a key role in the interaction with BST-2. In addition, cell growth in 3D type I collagen gel lattice and cell migration were all inhibited by BST-2. Taken together, BST-2, as a membrane protein and a tetherin of enveloped viruses, was a novel inhibitor of MT1-MMP and could be considerable as an inhibitor of cancer cell growth and migration on clinic.  相似文献   

16.
Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway   总被引:6,自引:0,他引:6  
Homocysteine (Hcy) induces matrix metalloproteinase (MMP)-9 in microvascular endothelial cells (MVECs). We hypothesized that the ERK1/2 signaling pathway is involved in Hcy-mediated MMP-9 expression. In cultured MVECs, Hcy induced activation of ERK, which was blocked by PD-98059 and U0126 (MEK inhibitors). Pretreatment with BAPTA-AM, staurosporine (PKC inhibitor), or Gö6976 (specific inhibitor for Ca2+-dependent PKC) abrogated ERK phosphorylation, suggesting the role of Ca2+ and Ca2+-dependent PKC in Hcy-induced ERK activation. ERK phosphorylation was suppressed by pertussis toxin (PTX), suggesting the involvement of G protein-coupled receptors (GPCRs) in initiating signal transduction by Hcy and leading to ERK activation. Pretreatment of MVECs with genistein, BAPTA-AM, or thapsigargin abrogated Hcy-induced ERK activation, suggesting the involvement of the PTK pathway in Hcy-induced ERK activation, which was mediated by intracellular Ca2+ pool depletion. ERK activation was attenuated by preincubation with N-acetylcysteine (NAC) and SOD, suggesting the role of oxidation in Hcy-induced ERK activation. Pretreatment with an ERK1/2 blocker (PD-98059), staurosporine, folate, or NAC modulated Hcy-induced MMP-9 activation as measured using zymography. Our results provide evidence that Hcy triggers the PTX-sensitive ERK1/2 signaling pathway, which is involved in the regulation of MMP-9 in MVECs. calcium signaling; protein kinase C; Src; G protein-coupled receptor; nonreceptor tyrosine kinase; protein Gi; protein Gq; protein tyrosine kinase 2; microvascular endothelial cell; cardiovascular remodeling  相似文献   

17.
Pharmacological targeting of inflammation through STAT3 and NF-κB signaling pathways is, among other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in transducing NF-κB intracellular signaling pathways, we tested whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2 inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphorylation and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory microenvironments and within experimental vascularizing tumors, these mechanistic observations support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable MSC to be active participants within inflamed tissues.  相似文献   

18.
Targeting of transforming growth factor beta (TGF-β) to the extracellular matrix (ECM) by latent TGF-β binding proteins (LTBPs) regulates the availability of TGF-β for interactions with endothelial cells during their quiescence and activation. However, the mechanisms which release TGF-β complexes from the ECM need elucidation. We find here that morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) resulted in membrane-type 1 matrix metalloproteinase (MT1-MMP) -mediated solubilization of latent TGF-β complexes from the ECM by proteolytic processing of LTBP-1. These processes required the activities of PKC and ERK1/2 signaling pathways and were coupled with markedly increased MT1-MMP expression. The functional role of MT1-MMP in LTBP-1 release was demonstrated by gene silencing using lentiviral short-hairpin RNA as well as by the inhibition with tissue inhibitors of metalloproteinases, TIMP-2 and TIMP-3. Negligible effects of TIMP-1 and uPA/plasmin system inhibitors indicated that secreted MMPs or uPA/plasmin system did not contribute to the release of LTBP-1. Current results identify MT1-MMP-mediated proteolytic processing of ECM-bound LTBP-1 as a mechanism to release latent TGF-β from the subendothelial matrix.  相似文献   

19.
Itoh Y  Takamura A  Ito N  Maru Y  Sato H  Suenaga N  Aoki T  Seiki M 《The EMBO journal》2001,20(17):4782-4793
Activation of proMMP-2 by MT1-MMP is considered to be a critical event in cancer cell invasion. In the activation step, TIMP-2 bound to MT1-MMP on the cell surface acts as a receptor for proMMP-2. Subsequently, adjacent TIMP-2-free MT1-MMP activates the proMMP-2 in the ternary complex. In this study, we demonstrate that MT1-MMP forms a homophilic complex through the hemopexin-like (PEX) domain that acts as a mechanism to keep MT1-MMP molecules close together to facilitate proMMP-2 activation. Deletion of the PEX domain in MT1-MMP, or swapping the domain with the one derived from MT4-MMP, abolished the ability to activate proMMP-2 on the cell surface without affecting the proteolytic activities. In addition, expression of the mutant MT1-MMP lacking the catalytic domain (MT1PEX-F) efficiently inhibited complex formation of the full-length enzymes and activation of pro MMP-2. Furthermore, expression of MT1PEX-F inhibited proMMP-2 activation and Matrigel invasion activity of invasive human fibrosarcoma HT1080 cells. These findings elucidate a new function of the PEX domain: regulating MT1-MMP activity on the cell surface, which accelerates cellular invasiveness in the tissue.  相似文献   

20.
Objectives: The focus of this study was to determine the dedicator of cytokinesis 2 (DOCK2), extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase-1 (JNK) and Akt signals involved in CXCL13-mediated prostate cancer (PCa) cell invasion and proliferation. Materials and methods: Androgen-sensitive (LNCaP), hormone-refractory (PC3) cells and normal cells (RWPE-1) were used to determine CXCL13-mediated PCa cell invasion and proliferation. Immuno-blotting, fast activated cell-based (FACE) ELISA, caspase activity, cell invasion and proliferation assays were performed to ascertain some of the signalling events involved in PCa cell proliferation and invasion. Results: Unlike androgen-sensitive LNCaP cells, we report for the first time that the hormone-refractory cell line, PC3, expresses DOCK2. CXCL13-mediated LNCaP and PC3 cell invasion was regulated by Akt and ERK1/2 activation in a DOCK2-independent fashion. CXCL13 also promoted LNCaP cell proliferation in a JNK-dependent fashion even in the absence of DOCK2. In contrast, CXCL13 induced PC3 cell proliferation through JNK activation, which required DOCK2. Conclusions: Our results show CXCL13-mediated PCa cell invasion requires Akt and ERK1/2 activation and suggests a new role for DOCK2 in proliferation of hormone-refractory CXCR5-positive PCa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号