首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Pollinator attraction, pollen limitation, resource limitation, pollen donation and selective fruit abortion have all been proposed as processes explaining why hermaphroditic plants commonly produce many more flowers than mature fruit. We conducted a series of experiments in Arizona to investigate low fruit-to-flower ratios in senita cacti, which rely exclusively on pollinating seed-consumers. Selective abortion of fruit based on seed predators is of particular interest in this case because plants relying on pollinating seed-consumers are predicted to have such a mechanism to minimize seed loss. Pollinator attraction and pollen dispersal increased with flower number, but fruit set did not, refuting the hypothesis that excess flowers increase fruit set by attracting more pollinators. Fruit set of natural- and hand-pollinated flowers were not different, supporting the resource, rather than pollen, limitation hypothesis. Senita did abort fruit, but not selectively based on pollen quantity, pollen donors, or seed predators. Collectively, these results are consistent with sex allocation theory in that resource allocation to excess flower production can increase pollen dispersal and the male fitness function of flowers, but consequently results in reduced resources available for fruit set. Inconsistent with sex allocation theory, however, fruit production and the female fitness function of flowers may actually increase with flower production. This is because excess flower production lowers pollinator-to-flower ratios and results in fruit abortion, both of which limit the abundance and hence oviposition rates, of pre-dispersal seed predators.  相似文献   

2.
A continuous-time model, similar to W. M. Schaffer's (1983, Amer. Nat. 121, 418–431), of growth and reproduction for a perennial herb with discrete growing seasons is considered. Assuming that metabolic rates of reproductive and storage structures are equal, it was possible, through the reduction of the continuous model to a discrete one, to find the optimal allocations to the vegetative, reproductive, and reserve structures. The main feature of the optimal strategy is the existence of an optimal reserve size. The allocation to vegetative structures is, every growing season, the allocation which maximizes the total of reproductive and reserve structures at the end of the season. The relative allocation between reserve and reproductive structures is given, when reproductive success is a linear function of investment, by the fastest growth to the optimal size: no reproduction until the optimal size is reached, and, afterwards, allocation to reproduction of everything beyond what is needed to maintain size R*. Asymptotic growth to the equilibrium and cycles are possible, when reproductive success is a nonlinear function of investment (A. Pugliese, 1988, in “Biomathematics and Related Computational Problems” (L. M. Ricciardi, Ed.), Reidel, Dordrecht, to appear). It has therefore been possible to solve the “general life history problem” ( Schaffer, 1983) when growth is in general a concave function of body size. In the Discussion discrete and continuous-time models are compared; if the real dynamics is described by a continuous model of the type analyzed here, life history predictions made by analyzing the system with a discrete model are upheld.  相似文献   

3.
Interspecific interactions can affect population dynamics and the evolution of species traits by altering demographic rates such as reproduction and survival. The influence of mutualism on population processes is thought to depend on both the benefits and costs of the interaction. However, few studies have explicitly quantified both benefits and costs in terms of demographic rates; furthermore there has been little consideration as to how benefits and costs depend on the demographic effects of factors extrinsic to the interaction. I studied how benefits (pollination) and costs (larval fruit consumption) of pollinating seed-consumers (senita moths) affect the reproduction of senita cacti and how these effects may rely on extrinsic water limitation for reproduction. Fruit initiation was not limited by moth pollination, but survival of initiated fruit increased when moth eggs were removed from flowers. Watered cacti produced more flowers and initiated more fruit from hand-pollinated flowers than did unwatered cacti, but fruit initiation remained low despite excess pollen. Even though water, pollination and larvae each affected a component of cactus reproduction, when all of these factors were included in a factorial experiment, pollination and water determined rates of reproduction. Counter-intuitively, larval fruit consumption had a negligible effect on cactus reproduction. By quantifying both benefits and costs of mutualism in terms of demographic rates, this study demonstrates that benefits and costs can be differentially influential to population processes and that interpretation of their influences can depend on demographic effects of factors extrinsic to the interaction.  相似文献   

4.
The fig–fig pollinator association is a classic case of an obligate mutualism. Fig‐pollinating wasps often have to fly long distances from their natal syconia to a receptive syconium and then must enter the narrow ostiole of the syconium to reproduce. Large wasps are expected to have a greater chance of reaching a receptive syconium. In this study, we tested this hypothesis and then examined whether the ostiole selectively prevented larger pollinators from entering the syconial cavity. In Xishuangbanna, China, Ceratosolen solmsi marchali Mayr (Hymenoptera: Agaonidae) pollinates the dioecious syconia of Ficus hispida L. (Moraceae). The body size of newly emerged wasps and wasps arriving at receptive syconia were compared. Wasps arriving at receptive syconia were significantly larger than newly emerged wasps. We also compared the size of wasps trapped in the ostiole with those in the cavity. Wasps trapped in the ostiole were significantly larger than those in the syconial cavity. Thus, in the case of F. hispida, large wasps were more likely to reach receptive syconia, but the ostiole limited maximum fig wasp size. This indicates that the ostiole, as a selective filter to pollinators, stabilizes pollinator size. Hence, it helps to maintain stability in the fig–fig pollinator mutualism.  相似文献   

5.
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.  相似文献   

6.
We developed a game-theoretic model for wind-dispersed seed production to examine the seed mass–dispersal ability relationship and the evolutionarily stable distance of seed dispersal in terms of exploitation of safe sites. We assumed trade-offs between masses of the embryo (including albumen) and the wind-dispersal structures per seed, and also between seed mass and number of seeds per parent. We showed that ESS wing-loading is independent of embryo mass; that is, heavy seeds are not poor dispersers if the cost of producing wind-dispersal structures per unit area is constant. The ESS embryo mass per seed depends only on the factors which determine the probability of a seedling being established from a seed. However, wing-loading was found to increase with embryo mass when the change in length was isometric and there was a negative correlation between seed mass and dispersal ability. Thus, the area–mass relationship in wind-dispersal structures may have large effects on the ESS production of wind-dispersed seeds. On the other hand, given that only a limited number of adults can be established at a safe site, the ESS seed dispersal distance depends on the relative degree of sib to non-sib competition. A parent disperses its seeds over a wide area to exploit many safe sites if sib competition is strong. However, it disperses its seeds within a narrow area if the mean number of parents per unit area is large, or if non-sib competition is strong. Thus, in addition to an upper limit on the number of adults per safe site, the degree of sib and non-sib competition may be important for the ESS dispersal distance in wind-dispersed seeds. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
In this article, we develop a simple model to study the effect of stochasticity in pollination on evolutionarily stable (ES) resource allocation within a hermaphrodite flower of animal-pollinating plants. For simplicity, we consider trade-off in resource allocation between attractive structure (petals etc.) and female function (seeds and fruits) with neglecting the amount of resource allocated to male function (pollens and stamens). We show that ES resource allocation does not much depend on the detail of the probability distribution of the number of pollinator visit on a flower, but on the probability that a flower fails to be visited. We also find that: (1) When the flowers are self-incompatible, the ES allocation to the attractive structure monotonically increases as the availability of pollinators in the environment decreases. (2) When there is strong positive correlation among flowers in the number of pollinator visit, the ES allocation is larger than the case without the correlation. (3) When the flowers are self-compatible and engage prior selfing, the ES allocation monotonically increases as the availability of pollinators in the environment decreases to a threshold, under which it suddenly decreases to zero.  相似文献   

9.
The classical model of colony dynamics developed by Macevicz and Oster predicts that optimal colony fitness in annual eusocial insects is achieved by a bang-bang strategy of reproduction: exclusive production of workers (ergonomic phase) followed by exclusive production of sexuals (reproductive phase). We propose an alternative model that assumes colony development in discrete broods and a limited overall investment potential of the queen. Based on the costs for producing eggs, workers, and sexuals and efficiency of individuals we predict the optimal number of workers and sexuals in the colony for each brood of the colony cycle that maximizes overall colony fitness. To link our model assumptions to the real world we chose model parameters according to field data of the halictid bee Lasioglossum malachurum. However, our model is representative of a large number of species with an annual life cycle and with discrete broods. Our model shows that the optimal partitioning of resources, i.e. the optimal workers/sexuals ratio depends on rearing cost for sexuals as well as productivity of workers but not on the queens’ total investment, egg cost, or rearing cost for workers. In complete accordance to Macevicz and Oster we predict a bang-bang reproduction strategy despite the differences in the basic assumptions. Potential deviations from this strategy and transitions from social to solitary breeding are discussed in the framework of our model. Received 31 October 2006; revised 29 March 2007; accepted 17 April 2007.  相似文献   

10.
Després L 《Oecologia》2003,135(1):60-66
Some plants are exclusively pollinated by an insect whose larvae feed on their seeds. The net outcome of a single visit for the plant depends on the number of ovules fertilised by the visitor, the number of eggs laid, and the number of seeds eaten by each larva. Unlike other known plant-seed eater pollinating mutualisms, the globeflower-globeflower fly mutualism (Trollius europaeus-Chiastocheta spp.) is unique in that not only females but also males visit flowers, and both sexes are potential pollinators. I analysed the relative efficiency of Chiastocheta males versus females in transporting pollen and fertilising globeflower ovules. I show that there is no sex-specific morphological adaptation or behaviour to enhance pollen collection and transportation in Chiastocheta flies, and that males contribute to pollination. However, because of their smaller body size, males transport significantly less pollen than females. Less seeds are produced after a visit from a male than after a visit from a female. A single female visit contributes to about 12% of total seed production, and a single male visit to only 5.4%. Females tend to spend more time inside the flower than males, and the number of ovules fertilised is significantly correlated with the time insects spent inside the closed corolla. The lower efficiency of ovule fertilisation by a male's single visit is compensated for by the higher rate of flower visitation by males: a flower receives about twice as many visits from males as from females during a time unit. The contribution of males to pollination is of major importance with respect to understanding the evolutionary stability of the globeflower-globeflower fly mutualism, as males satiate pollen requirement of flowers, masking the antagonistic effect of ovipositing females.  相似文献   

11.
Genetic and environmental variation of functional traits within populations might be maintained by natural selection when resource allocation costs (RACs) balance trait benefits. Despite the intuitive appeal of optimization models, empirical tests have failed to support the importance of RACs for plant traits that confer resistance against pests. To address this discrepancy, we modified an early model by allowing the cost function to vary across a resource gradient as predicted for RACs and by assuming that the benefits depend on variation in the pest population for susceptibility. Instead of the intermediate defense optimum of the original model, defenses were predicted to be either high or absent, depending on resource availability and history. This result is not supported by empirical tests for ecological or evolutionary outcomes, including our own examination of glucosinolate toxins from sib-families of Boechera stricta (Brassicaceae) grown across an NPK fertilizer gradient. Although we detected an apparent cost of defense in the absence of herbivores, the cost did not increase as resources became more limiting. Also defense production did not vary across the resource gradient as predicted by the modified model. Thus, a model based on explicit expectations of RACs produced predictions that are not supported. Instead, other kinds of costs, such as ecological (indirect) costs may be more important. Alternatively, general conflicts in gene expression and antagonistic crosstalk among signaling pathways may underlie apparent costs.  相似文献   

12.

Background  

Plasmids are being reconsidered as viable vector alternatives to viruses for gene therapies and vaccines because they are safer, non-toxic, and simpler to produce. Accordingly, there has been renewed interest in the production of plasmid DNA itself as the therapeutic end-product of a bioprocess. Improvement to the best current yields and productivities of such emerging processes would help ensure economic feasibility on the industrial scale. Our goal, therefore, was to develop a stoichiometric model of Escherichia coli metabolism in order to (1) determine its maximum theoretical plasmid-producing capacity, and to (2) identify factors that significantly impact plasmid production.  相似文献   

13.
14.
15.
16.
The diversity and abundance of insect pollinators are declining. This decline reduces the potential ecosystem services of pollination for wild and cultivated plants. Specific agri-environment schemes (AES) are subsidised to support and conserve biodiversity in farmlands. In Belgium, the pollinator flower-strips AES, strips of flower-rich hay meadows, has been promoted as a potential scheme to increase pollinator abundance and diversity, even if their effectiveness has not been locally evaluated. The main objective of this research is to assess the capacity of pollinator-strip AES to provide flower-resources to diverse pollinators. During 2 years, we monthly measured the availability of flower resources (pollen and nectar) produced on four flower-strips surrounded by intensive farming in Belgium. We counted and identified insects that visited these flowers, and we constructed the plant–insect interactions networks. The pollinator-strip AES presented a mix of both sown and spontaneous plant species. The ten sown plant species were all present, even after 8 years of strip settings. Three of them, Centaurea jacea, Lotus corniculatus, and Daucus carota were mainly visited for nectar collection, and a spontaneous non-sown species, Trifolium repens, had a key role in providing high-quality pollen to insects. Most of the observed flower-visiting insects belonged to common species of Hymenoptera and Diptera. All are considered highly efficient pollinators. The Belgian pollinator flower-strips are effective AES that provide flower resources to pollinators, mainly during summer and support pollination services. Nevertheless, spring and autumn flower resources remain poor and could reduce the strips’ effectiveness for supporting long-term insect diversity.  相似文献   

17.
1. Fig pollinating wasps (Agaonidae) enter Ficus inflorescences (figs), oviposit in some of the flowers, and pollinate in the process. Each larva completes its development within a single flower. In most cases, an inflorescence entered by a wasp will represent its only egg‐laying site. The mechanisms that prevent pollinating wasps from exploiting all the flowers inside a fig are not understood. In this study, hypotheses about flower use by pollinating fig wasps were tested by investigating egg deposition patterns in three species. 2. Either one or three wasps were introduced into figs. The figs were then harvested. Serial sections allowed assessment of the presence or absence of a wasp egg in a sample of flowers in each fig. The overall proportion of flowers with eggs and the spatial distribution of eggs were then compared in single wasp figs and three foundress figs. 3. In all species, the proportion of flowers with a wasp egg increased with foundress number but less than three‐fold. 4. In all species, at least in single foundress figs, flowers near the fig cavity were more likely to receive a wasp egg than were flowers near the fig wall. 5. In two species, when the number of foundresses was multiplied by three, there was an increase in the use of flowers near the fig wall, while in the third species, the increase was spread evenly among flowers. 6. Factors affecting wasp egg deposition patterns and the potential of investigating such patterns for studying the stability of the mutualism are discussed.  相似文献   

18.
Two qualitative case studies focus on the allocation of CDC funds distributed during 2002 for bioterrorism preparedness in two Texas public health regions (each as populous and complex as many states). Lessons learned are presented for public health officials and others who work to build essential public health services and security for our nation. The first lesson is that personal relationships are the cornerstone of preparedness. A major lesson is that a regional strategy to manage funds may be more effective than allocating funds on a per capita basis. One regional director required every local department to complete a strategic plan as a basis for proportional allocation of the funds. Control of communicable diseases was a central component of the planning. Some funds were kept at the regional level to provide epidemiology services, computer software, equipment, and training for the entire region. Confirmation of the value of this regional strategy was expressed by local public health and emergency management officials in a focus group 1 year after the strategy had been implemented. The group members also pointed out the need to streamline the planning process, provide up-to-date computer networks, and receive more than minimal communication. This regional strategy can be viewed from the perspective of adaptive leadership, defined as activities to bring about constructive change, which also can be used to analyze other difficult areas of preparedness.  相似文献   

19.
Figs and fig-pollinating wasps are obligate mutualists that require each other to complete sexual reproduction. However, landscapers can establish populations of fig trees outside their native ranges by propagation through exported seeds, seedlings or cuttings. Once mature, these trees could be colonized by pollinating wasps and/or various non-pollinating wasps that also develop in figs. In recent decades, the Australian endemic Ficus rubiginosa has been planted widely in the Mediterranean region and in parts of the USA. Observation of ripe fruit production suggested that a pollination mutualism has been re-established by pollinating wasps colonizing trees in the plant’s introduced range. We therefore used sampling of pollinators from mainland Spain, Tenerife and California (USA) and molecular studies to characterize the restructured mutualism and compare it with the native range. In the native range, the plant is pollinated by five wasp species that form the Pleistodontes imperialis complex. However, all wasps in the introduced ranges belonged to just one of these species (P. imperialis sp. 1). Moreover, their mtDNA diversity was close to zero and the sequences clearly link them with the native southern population of this species. None of the?>?20 non-pollinating wasp species from the native range were found in the introduced ranges. In summary, the restructured mutualism has been dramatically simplified, lacking all non-pollinating wasps and all but one pollinator species from the native range. Moreover, the one pollinator species to establish successfully shows a drastic reduction in genetic diversity relative to its source population.  相似文献   

20.
Expansion and intensification of human land use represents the major cause of habitat fragmentation. Such fragmentation can have dramatic consequences on species richness and trophic interactions within food webs. Although the associated ecological consequences have been studied by several authors, the evolutionary effects on interacting species have received little research attention. Using a genetic algorithm, we quantified how habitat fragmentation and environmental variability affect the optimal reproductive strategies of parasitic wasps foraging for hosts. As observed in real animal species, the model is based on the existence of a negative trade-off between survival and reproduction resulting from competitive allocation of resources to either somatic maintenance or egg production. We also asked to what degree plasticity along this trade-off would be optimal, when plasticity is costly. We found that habitat fragmentation can indeed have strong effects on the reproductive strategies adopted by parasitoids. With increasing habitat fragmentation animals should invest in greater longevity with lower fecundity; yet, especially in unpredictable environments, some level of phenotypic plasticity should be selected for. Other consequences in terms of learning ability of foraging animals were also observed. The evolutionary consequences of these results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号