首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of emerging drug resistance in pathogens, there is a need to explore alternative strategies to combat infections. Use of probiotics is one such option. In this regard, efficacy of Lactobacillus plantarum has been reported against Staphylococcus aureus. Here, we propose that cell free supernatant (CFS) of Lactobacillus paraplantarum when used in combination with conventional antibiotics viz. ampicillin and oxacillin [to which the methicillin resistant Staphylococcus aureus (MRSA) strains were originally resistant] reduce the minimum inhibitory concentrations of these antibiotics, rendering the combination either synergistic or additive against the tested MRSA strain. The anti-staphylococcal activity was observed to be due to organic acids (acetic acid and lactic acid as confirmed by HPLC analysis) present in the CFS, as neutralization of the CFS with an alkali, sodium hydroxide (NaOH), caused the complete abrogation of its activity. The role of H2O2 and bacteriocin present in the CFS was also ruled out. The findings of this study suggest that cell free supernatant and ampicillin/oxacillin combination(s) might help in rejuvenating the use of conventional anti-staphylococcal antibiotics for the treatment of multi-drug resistant strains.  相似文献   

2.
The increasing antibiotic resistance of Acinetobacter species in both natural and hospital environments has become a serious problem worldwide in recent decades. Because of both intrinsic and acquired antimicrobial resistance (AMR) against last-resort antibiotics such as carbapenems, novel therapeutics are urgently required to treat Acinetobacter-associated infectious diseases. Among the many pathogenic Acinetobacter species, A. baumannii has been reported to be resistant to all classes of antibiotics and contains many AMR genes, such as blaADC (Acinetobacter-derived cephalosporinase). The AMR of pathogenic Acinetobacter species is the result of several different mechanisms, including active efflux pumps, mutations in antibiotic targets, antibiotic modification, and low antibiotic membrane permeability. To overcome the limitations of existing drugs, combination theraphy that can increase the activity of antibiotics should be considered in the treatment of Acinetobacter infections. Understanding the molecular mechanisms behind Acinetobacter AMR resistance will provide vital information for drug development and therapeutic strategies using combination treatment. Here, we summarize the classic mechanisms of Acinetobacter AMR, along with newly-discovered genetic AMR factors and currently available antimicrobial adjuvants that can enhance drug efficacy in the treatment of A. baumannii infections.  相似文献   

3.
Cathelicidins are a family of antimicrobial peptides which exhibit broad antimicrobial activities against antibiotic-resistant bacteria. Considering the progressive antibiotic resistance, cathelicidin is a candidate for use as an alternative approach to treat and overcome the challenge of antimicrobial resistance. Cathelicidin-BF (Cath-BF) is a short antimicrobial peptide, which was originally extracted from the venom of Bungarus fasciatus. Recent studies have reported that Cath-BF and some related derivatives exert strong antimicrobial and weak hemolytic properties. This study investigates the bactericidal and cytotoxic effects of Cath-BF and its analogs (Cath-A and Cath-B). Cath-A and Cath-B were designed to increase their net positive charge, to have more activity against methicillin resistant S. aureus (MRSA). The results of this study show that Cath-A, with a +17-net charge, has the most noteworthy antimicrobial activity against MRSA strains, with minimum inhibitory concentration (MIC) ranging between 32–128 μg/ml. The bacterial kinetic analysis by 1 × MIC concentration of each peptide shows that Cath-A neutralizes the clinical MRSA isolate for 60 min. The present data support the notion that increasing the positive net charge of antimicrobial peptides can increase their potential antimicrobial activity. Cath-A also displayed the weakest cytotoxicity effect against human umbilical vein endothelial and H9c2 rat cardiomyoblast cell lines. Analysis of the hemolytic activity reveals that all three peptides exhibit minor hemolytic activity against human erythrocytes at concentrations up to 250 μg/ml. Altogether, these results suggest that Cath-A and Cath-B are competent candidates as novel antimicrobial compounds against MRSA and possibly other multidrug resistant bacteria.  相似文献   

4.
Antimicrobial peptides (AMPs) have the potential to become valuable antimicrobial drugs in the coming years, since they offer wide spectrum of action, rapid bactericidal activity, and low probability for resistance development in comparison with traditional antibiotics. The search and improvement of methodologies for discovering new AMPs to treat resistant bacteria such as Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are needed for further development of antimicrobial products. In this work, the software Peptide ID 1.0® was used to find new antimicrobial peptide candidates encrypted in proteins, considering the physicochemical parameters characteristics of AMPs such as positive net charge, hydrophobicity, and sequence length, among others. From the selected protein fragments, new AMPs were designed after conservative and semi-conservative modifications and amidation of the C-terminal region. In vitro studies of the antimicrobial activity of the newly designed peptides showed that two peptides, P3-B and P3-C, were active against P. aeruginosa Escherichia coli and A. baumannii with low minimum inhibitory concentrations. Peptide P3-C was also active against K. pneumoniae and S. aureus. Furthermore, bactericidal activity and information on the possible mechanisms of action are described according to the scanning electron microscopy studies.  相似文献   

5.
Enterococcus faecalis B3A-B3B produces the bacteriocin B3A-B3B with activity against Listeria monocytogenes, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium perfringens, but apparently not against fungi or Gram-negative bacteria, except for Salmonella Newport. B3A-B3B enterocin has two different nucleotides but similar amino acid composition to the class IIb MR10A-MR10B enterocin. B3A-B3B consists of two peptides of predicted molecular mass of 5176.31 Da (B3A) and 5182.21 Da (B3B). Importantly, B3A-B3B impeded biofilm formation of the foodborne pathogen L. monocytogenes 162 grown on stainless steel. The antimicrobial treatment of stainless steel with nisin (1 or 16 mg ml?1) decreased the cell numbers by about 2 log CFU ml?1, thereby impeding the biofilm formation by L. monocytogenes 162 or its nisin-resistant derivative strain L. monocytogenes 162R. Furthermore, the combination of nisin and B3A-B3B enterocin reduced the MIC required to inhibit this pathogen grown in planktonic or biofilm cultures.  相似文献   

6.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

7.
We report synthesis of silver nanoparticles (AgNPs) from Streptomyces xinghaiensis OF1 strain, which were characterised by UV–Vis and Fourier transform infrared spectroscopy, Zeta sizer, Nano tracking analyser, and Transmission electron microscopy. The antimicrobial activity of AgNPs alone, and in combination with antibiotics was evaluated against bacteria, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis, and yeasts viz., Candida albicans and Malassezia furfur by using micro-dilution method. The minimum inhibitory concentration (MIC) and minimum biocidal concentration of AgNPs against bacterial and yeast strains were determined. Synergistic effect of AgNPs in combination with antibacterial and antifungal antibiotics was determined by FIC index. In addition, MTT assay was performed to study cytotoxicity of AgNPs alone and in combination with antibiotics against mouse fibroblasts and HeLa cell line. Biogenic AgNPs were stable, spherical, small, polydispersed and capped with organic compounds. The variable antimicrobial activity of AgNPs was observed against tested bacteria and yeasts. The lowest MIC (16 µg ml?1) of AgNPs was found against P. aeruginosa, followed by C. albicans and M. furfur (both 32 µg ml?1), B. subtilis and E. coli (both 64 µg ml?1), and then S. aureus and Klebsiella pneumoniae (256 µg ml?1). The high synergistic effect of antibiotics in combination with AgNPs against tested strains was found. The in vitro cytotoxicity of AgNPs against mouse fibroblasts and cancer HeLa cell lines revealed a dose dependent potential. The IC50 value of AgNPs was found in concentrations of 4 and 3.8 µg ml?1, respectively. Combination of AgNPs and antibiotics significantly decreased concentrations of both antimicrobials used and retained their high antibacterial and antifungal activity. The synthesis of AgNPs using S. xinghaiensis OF1 strain is an eco-friendly, cheap and nontoxic method. The antimicrobial activity of AgNPs could result from their small size. Remarkable synergistic effect of antibiotics and AgNPs offer their valuable potential in nanomedicine for clinical application as a combined therapy in the future.  相似文献   

8.
Terminalia chebula Retz. is a northern Indian plant species known for its anti-inflammatory and antimicrobial properties. T. chebula fruit powder was extracted with solvents of varying polarity and screened for bacterial growth inhibition by disc diffusion assay. The minimum inhibitory concentration (MIC) was quantified by both liquid dilution and disc diffusion techniques. To screen for combinatorial effects, the T. chebula fruit extracts were combined with a range of conventional antibiotics and tested against each bacteria using a liquid dilution assay. Where synergy was detected, the optimal ratios were determined using isobologram analysis. Toxicity was examined using Artemia nauplii and HDF bioassays. T. chebula fruit methanolic, aqueous and ethyl acetate extracts displayed strong antimicrobial activity against the bacterial triggers of all autoimmune inflammatory diseases except K. pneumoniae, for which only moderate inhibition was observed. Indeed, MIC values as low as 195 μg/mL were measured for the aqueous extract against a resistant strain of P. aeruginosa. Of further note, both the aqueous and ethyl acetate extracts interacted synergistically in combination with tetracycline against K. pneumoniae (Σ FIC 0.38 and 0.25 respectively). All extracts were nontoxic in the Artemia and HDF toxicity assays, further indicating their potential for medicinal use.  相似文献   

9.

Background

Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated.

Methods

The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2–1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA.

Results

The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p < 0.001) enhanced when both agents were applied in combination compared to each agent alone. Similarly, synergistic interactions were observed when AgNPs were combined with amoxicillin, azithromycin, clarithromycin or linezolid in 30–40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested.

Conclusions

A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which have been proven to be ineffective against MRSA. The suggested approach would be useful to face the fast-growing drug-resistance with the slow development of new antimicrobial agents, and to preserve last resort antibiotics such as vancomycin.
  相似文献   

10.
Staphylococcus aureus infections are considered as seriously problematic for human health and necessitate the development of new medicines and innovative antimicrobial strategies. Plant secondary metabolites have already demonstrated their potential as antibacterials when used alone but also in combination with other antimicrobial agents to potentiate their activity. Triterpenoids are widely distributed in the plant kingdom and known to have many beneficial effects, including anti-inflammatory, immunomodulatory, anti-proliferative, antimycotic, or antimicrobial activity. The aim of this paper is to review the activity of pentacyclic triterpenoids belonging to the ursane, oleanane, or lupane groups against Staphylococcus aureus. We summarize their activity as anti-staphylococcal compounds but also as resistance modifying agents when combined with common antibiotics.  相似文献   

11.
Methicillin resistant Staphylococcus aureus (MRSA) with multiple drug resistance patterns is frequently isolated from skin and soft tissue infections that are involved in chronic wounds. Today, difficulties in the treatment of MRSA associated infections have led to the development of alternative approaches such as antimicrobial photodynamic therapy. This study aimed to investigate photoinactivation with cationic porphyrin derivative compounds against MRSA in in-vitro conditions. In the study, MRSA clinical isolates with different antibiotic resistance profiles were used. The newly synthesized cationic porphyrin derivatives (PM, PE, PPN, and PPL) were used as photosensitizer, and 655 nm diode laser was used as light source. Photoinactivation experiments were performed by optimizing energy doses and photosensitizer concentrations. In photoinactivation experiments with different energy densities and photosensitizer concentrations, more than 99% reduction was achieved in bacterial cell viability. No decrease in bacterial survival was observed in control groups. It was determined that there was an increase in photoinactivation efficiency by increasing the energy dose. At the energy dose of 150 J/cm2 a survival reduction of over 6.33 log10 was observed in each photosensitizer type. While 200 μM PM concentration was required for this photoinactivation, 12.50 μM was sufficient for PE, PPN, and PPL. In our study, antimicrobial photodynamic therapy performed with cationic porphyrin derivatives was found to have potent antimicrobial efficacy against multidrug resistant S. aureus which is frequently isolated from wound infections.  相似文献   

12.
Head blight caused by Fusarium graminearum (F. graminearum) is one of the major threats to wheat and barley around the world. The importance of this disease is due to a reduction in both grain yield and quality in infected plants. Currently, there is limited knowledge about the physiological mechanisms involved in plant resistance against this pathogen. To reveal the physiological mechanisms underlying the resistance to F. graminearum, spikes of resistant (Sumai3) and susceptible (Falat) wheat cultivars were analyzed 4 days after inoculation, as the first symptoms of pathogen infection appeared. F. graminearum inoculation resulted in a greater induction level and activity of salicylic acid (SA), callose, phenolic compounds, peroxidase, phenylalanine ammonia lyase (PAL), and polyphenol oxidase in resistant versus susceptible cultivars. Soil drench application to spikes of SA, 24 h before inoculation with F. graminearum alleviated Fusarium head blight symptoms in both resistant and susceptible cultivars. SA treated plants showed a significant increment in hydrogen peroxide (H2O2) production, lipid peroxidation, SA, and callose content. SA-induced H2O2 level seems to be related to increased superoxide dismutase and decreased catalase activities. In addition, real-time quantitative PCR analysis showed that SA pretreatment induced expression of PAL genes in both infected and non-infected head tissues of the susceptible and resistant cultivars. Our data showed that soil drench application of SA activates antioxidant defense responses and may subsequently induce systemic acquired resistance, which may contribute to the resistance against F. graminearum. These results provide novel insights about the physiological and molecular role of SA in plant resistance against hemi-biotrophic pathogen infection.  相似文献   

13.
Multidrug resistance of Gram-negative bacilli is a major problem globally. However, little is known about the combined probability of resistance to various antibiotics. In this study, minimum inhibitory concentrations of widely used antibiotics were determined using clinical isolates of Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, randomly chosen from strain collections created during 1999–2009 in tertiary medical institutions in Seoul, South Korea. To analyze combined efficacy of antibiotics against a subgroup of isolates, conditional probabilities were determined based on arbitrary, non-independent patterns of antimicrobial susceptibility and resistance. Multidrug resistance, defined as resistance to three or more classes of antibiotics, was observed in the following order: A. baumannii (96%), P. aeruginosa (65%), E. coli (52%), and K. pneumoniae (7%). A. baumannii strains resistant to gentamicin were found to be resistant to a number of antibiotics, except for colistin and polymyxin B. Resistance to gentamicin following exposure to this antibiotic was highly likely to lead to multidrug resistance in all four microbes. This study shows a causal relationship between gentamicin resistance and the prevalence of multidrug resistance in clinical isolates of Gramnegative bacilli in South Korea during 1999–2009 and suggests the importance of prudent use of gentamicin in hospitals.  相似文献   

14.

Background

Mortality rates for patients with Staphylococcus aureus (S. aureus) infections have improved only modestly in recent decades and S. aureus infections remain a major clinical challenge This study investigated the in vitro antimicrobial activity of erevacycline (erava) against clinical S. aureus isolates from China, as well as the heteroresistance frequency of erava and sequence types (STs) represented in the sample.

Results

A sample of 328 non-duplicate clinical S. aureus isolates, including 138 methecillin-resistant (MRSA) and 190 methecillin-sensitive (MSSA) isolates, were collected retrospectively in China. Erava exhibited excellent in vitro activity (MIC50 ≤?0.25?mg/L) against MRSA and MSSA, including isolates harboring Tet specific resistance genes. The frequency of erava heteroresistance in MSSA with erava MICs?=?0.5?mg/L was 13.79% (4/29); no MRSA with erava MICs ≤0.5?mg/L exhibited heteroresistance. Heteroresistance- derived clones had no 30S ribosome subunit mutations, but their erava MICs (range, 1–4?mg/L) were suppressed dramatically in the presence of efflux protein inhibitors.

Conclusions

Conclusively, erava exhibited excellent in vitro activity against S. aureus, however hints of erava heteroresistance risk and MIC creep were detected, particularly among MSSA with MICs of 0.5?mg/L.
  相似文献   

15.
The main drawback of current antibiotic therapies is the emergence and rapid increase in antibiotic resistance. Nocardiae are aerobic, Gram-positive, catalase-positive, non-motile actinomycetes. Nocardia brasiliensis was reported as antibiotic producer. The purpose of the study was to determine antibacterial activity of N. brasiliensis PTCC 1422 against isolated Enterobacteriaceae from urinary tract infections (UTIs). The common bacteria from UTIs were isolated from hospital samples. Antimicrobial susceptibility test was performed for the isolated pathogens using Kirby–Bauer disk diffusion method according to clinical and Laboratory Standards Institute guideline. Antagonistic activity of N. brasiliensis PTCC 1422 was examined with well diffusion methods. Supernatant of N. brasiliensis PTCC 1422 by submerged culture was analyzed with gas chromatography–mass spectrometry. Isolated strains included Escherichia coli, Klebsiella pneumoniae, Serratia marcescens and Proteus mirabilis. The most common pathogen isolated was E. coli (72.5 %). Bacterial isolates revealed the presence of high levels of antimicrobial resistances to ceftriaxone and low levels of resistance to cephalexin. Supernatant of N. brasiliensis PTCC 1422 showed antibacterial activity against all of the isolated microorganisms in well diffusion method. The antibiotic resistance among the uropathogens is an evolving process, so a routine surveillance to monitor the etiologic agents of UTI and the resistance pattern should be carried out timely to choose the most effective empirical treatment by the physicians. Our present investigation indicates that the substances present in the N. brasiliensis PTCC 1422 could be used to inhibit the growth of human pathogen. Antibacterial resistance among bacterial uropathogen is an evolving process. Therefore, in the field on the need of re-evaluation of empirical treatment of UTIs, our present. The study has demonstrated that N. brasiliensis PTCC 1422 has a high potential for the treatment of UTIs.  相似文献   

16.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) infections with multi-drug resistance needs effective and alternative control strategies. In this study we investigated the adjuvant effect of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against multidrug-resistant S. aureus (MDRSA) strain 01ST001 by disc diffusion, checker board and time kill assays. Further the membrane targeting action of 7,10-EODA was investigated by spectroscopic and confocal microscopic studies. 7,10-EODA exerted synergistic activity along with β-lactam antibiotics against all clinical MRSA strains, with a mean fractional inhibitory concentration index below 0.5. In time-kill kinetic study, combination of 7,10-EODA with oxacillin, ampicillin, and penicillin resulted in 3.8–4.2 log10 reduction in the viable counts of MDRSA 01ST001. Further, 7,10-EODA dose dependently altered the membrane integrity (p < 0.001) and increased the binding of fluorescent analog of penicillin, Bocillin-FL to the MDRSA cells. The membrane action of 7,10-EODA further facilitated the uptake of several other antibiotics in MDRSA. The results of the present study suggested that 7,10-EODA could be a novel antibiotic adjuvant, especially useful in repurposing β-lactam antibiotics against multidrug-resistant MRSA.  相似文献   

17.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

18.
Biofilms are structured consortia of microbial cells that grow on living and non living surfaces and surround themselves with secreted polymers. Infections with bacterial biofilms have emerged as a foremost public health concern because biofilm growing cells can be highly resistant to both antibiotics and host immune defenses. Zinc oxide nanoparticles have been reported as a potential antimicrobial agent, thus, in the current study, we have evaluated the antimicrobial as well as antibiofilm activity of zinc oxide nanoparticles against the bacterium Streptococcus pneumoniae which is a significant cause of disease. Zinc oxide nanoparticles showed strong antimicrobial activity against S. pneumoniae, with an MIC value of 40 μg/ml. Biofilm inhibition of S. pneumoniae was also evaluated by performing a series of experiments such as crystal violet assay, microscopic observation, protein count, EPS secretion etc. using sub-MIC concentrations (3, 6 and 12 µg/ml) of zinc oxide nanoparticles. The results showed that the sub-MIC doses of zinc oxide nanoparticles exhibited significant anti-biofilm activity against S. pneumoniae, with maximum biofilm attenuation found at 12 μg/ml. Taken together, the results indicate that zinc oxide nanoparticles can be considered as a potential agent for the inhibition of microbial biofilms.  相似文献   

19.
Dissemination of vancomycin resistance from hospital to community strains is a serious threat to public health. Our study aimed to provide evidence for transmission of Van A type resistance from the hospital to the community. Wild-type community and hospital associated methicillin resistant Staphylococcus aureus strains were studied in vitro and in a model that mimicked a natural environment to ascertain their ability to acquire and maintain the vancomycin resistance determinant (Van A gene) from vancomycin resistant Enterococcus faecalis. Fitness was assessed and the cost of Van A acquisition and retention was estimated. In vitro mating experiments were carried out using a filter mating technique and a model of a natural water body environment. Transfer of resistance was carried out in two different conditions: restricted and favorable. Transconjugants were confirmed by E test and PCR using specific primer sets. Growth kinetics and fitness measurements were done by spectrometric analysis. Using the in vitro filter mating technique, high transfer frequencies that ranged from 0.7 × 10–3(0.0006) to 3.1 × 10–4(0.00011) were recorded, with the highest transfer frequencies for CA MRSA (thermosensitively homogenous) (0.7 × 10–3), and 1.2 × 10–4 to 2.4 × 10–6 in the model. HA MRSA (homogenous) showed a greater capacity (3.6 × 10–4) to receive the Van A gene, while CA MRSA showed a reduced ability to maintain the gene after serial subcultures. CA and HA thermosensitively heterogeneous MRSA transconjugants exhibited higher growth rates. The present study provides evidence for the enhanced ability of CA and HA MRSA clones to acquire and maintain Van A type resistance.  相似文献   

20.
The present study evaluates the probiotic properties of three Lactobacillus plantarum strains MJM60319, MJM60298, and MJM60399 possessing antimicrobial activity against animal enteric pathogens. The three strains did not show bioamine production, mucinolytic and hemolytic activity and were susceptible to common antibiotics. The L. plantarum strains survived well in the simulated orogastrointestinal transit condition and showed adherence to Caco-2 cells in vitro. The L. plantarum strains showed strong antimicrobial activity against enterotoxigenic Escherichia coli, Shiga toxin-producing E. coli, Salmonella enterica subsp. enterica serovar Typhimurium, Choleraesuis and Gallinarum compared to the commercial probiotic strain Lactobacillus rhamnosus GG. The mechanism of antimicrobial activity of the L. plantarum strains appeared to be by the production of lactic acid. Furthermore, the L. plantarum strains tolerated freeze-drying and maintained higher viability in the presence of cryoprotectants than without cryoprotectants. Finally, the three L. plantarum strains tolerated NaCl up to 8% and maintained >60% growth. These characteristics of the three L. plantarum strains indicate that they could be applied as animal probiotic after appropriate in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号