首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to form a fractal colony was shown to be common among several species of the family Enterobacteriaceae. Bacterial spreading growth in a two-dimensional field of nutrient concentration was indicated to be important for this experimental self-similar morphogenesis. As a basic analogy, the diffusion-limited aggregation model was suggested. Fractal dimensions of colonies were mostly in the range of values from 1.7 to 1.8, similar to those of the two-dimensional diffusion-limited aggregation model. Bacterial characteristics and culture conditions inducing changes in fractal patterns and growth rates were identified. The contribution of the bacterial multicellular nature to fractal morphogenesis is discussed.  相似文献   

2.
Through use of an initial fixative employing a combination of crotonaldehyde and glutaraldehyde, septa were preserved in thin sections of dividing cells of strains of Pseudomonas aeruginosa, Salmonella typhimurium, Shigella sonnei, and Escherichia coli when grown at 30 C in a dilute basal medium. The same procedures, however, revealed only a constrictive division process in Proteus vulgaris and Erwinia sp. This adds to the evidence that septation, although difficult to demonstrate, is the process of cell division in the enteric gram-negative rods and the pseudomonads and that constriction is a fixation artifact in these organisms.  相似文献   

3.
Plant cell morphogenesis depends critically on two processes: the deposition of new wall material at the cell surface and the mechanical deformation of this material by the stresses resulting from the cell's turgor pressure. We developed a model of plant cell morphogenesis that is a first attempt at integrating these two processes. The model is based on the theories of thin shells and anisotropic viscoplasticity. It includes three sets of equations that give the connection between wall stresses, wall strains and cell geometry. We present an algorithm to solve these equations numerically. Application of this simulation approach to the morphogenesis of tip-growing cells illustrates how the viscoplastic properties of the cell wall affect the shape of the cell at steady state. The same simulation approach was also used to reproduce morphogenetic transients such as the initiation of tip growth and other non-steady changes in cell shape. Finally, we show that the mechanical anisotropy built into the model is required to account for observed patterns of wall expansion in plant cells.  相似文献   

4.
5.
This work describes mathematically the dynamics of expansion of cell populations from the initial division of single cells to colonies of several hundred cells. This stage of population growth is strongly influenced by stochastic (random) elements including, among others, cell death and quiescence. This results in a wide distribution of colony sizes. Experimental observations of the NIH3T3 cell line as well as for the NIH3T3 cell line transformed with the ras oncogene were obtained for this study. They include the number of cells in 4-day-old colonies initiated from single cells and measurements of sizes of sister cells after division, recorded in the 4-day-old colonies. The sister cell sizes were recorded in a way which enabled investigation of their interdependence. We developed a mathematical model which includes cell growth and unequal cell division, with three possible outcomes of each cell division: continued cell growth and division, quiescence, and cell death. The model is successful in reproducing experimental observations. It provides good fits to colony size distributions for both NIH3T3 mouse fibroblast cells and the same cells transformed with the rasEJ human cancer gene. The difference in colony size distributions could be fitted by assuming similar cell lifetimes (12-13 hr) and similar probabilities of cell death (q = 0.15), but using different probabilities of quiescence, r = 0 for the ras oncogene transformed cells and r = 0.1 for the non-transformed cells. The model also reproduces the evolution of distributions of sizes of cells in colonies, from a single founder cell of any specified size to the stable limit distribution after eight to ten cell divisions. Application of the model explains in what way both random events and deterministic control mechanisms strongly influence cell proliferation at early stages in the expansion of colonies.  相似文献   

6.
7.
8.
9.
10.
Micrasterias cells as a model system for research on morphogenesis.   总被引:1,自引:1,他引:0       下载免费PDF全文
Micrasterias species have been the subject of numerous experimental studies on cell shape formation in the last 40 years. Chemical and physical treatment during different developmental stages, as well as investigations of ultrastructure by means of various different preparation methods, have yielded information about some principles of morphogenesis in the symmetric, highly ornamented Micrasterias cell. The basic symmetry of a Micrasterias cell is determined prior to mitosis and is established without nuclear control thereafter. Normal cell development, however, may occur only under the conditions of continuous protein synthesis throughout the cell cycle. A prepattern for the later cell shape seems to be present at the plasma membrane at the early stages of septum formation. It is realized by a local, patterned distributed incorporation of cell wall material that is delivered by Golgi-produced vesicles. The areas where fusions take place between the primary wall material containing vesicles and the plasma membrane are defined by inward ionic currents that are carried at least in part by calcium. These areas develop into lobes during the following course of cell growth. Cell shaping in Micrasterias cells is thus mediated by both an enhanced extension of the cell wall and an additional incorporation of wall material in the areas of the lobes. Numerous studies have indicated that actin plays an important role in morphogenesis, whereas microtubules do not participate in this process but are involved mainly in nuclear migration. The present review shows that although a wealth of details concerning Micrasterias morphogenesis has already been elucidated, two main questions, i.e., the method of septum formation and the splitting of the lobes, remain to be answered.  相似文献   

11.
Pattern formation in hydra is controlled by two sets of morphogens: an activator and an inhibitor o f head and bud formation, and an activator and an inhibitor o f foot formation.  相似文献   

12.
Blood mononuclear cells (MNC) develop into T cell colonies when the cells are sensitized with PHA and seeded in a two-layer soft agar system. Conditioned medium (CM) derived from MNC enhanced lymphocyte colony formation when it was added to the culture system. CFU-TL appear to be stimulated into colony formation by molecules secreted by lymphocyte subpopulations contained in the seeded cells. In this study, human peripheral blood MNC were fractionated by a battery of techniques into adherent, E+, CD4+, CD8+, B and null cells. CM was prepared from each of the subpopulations and its effects on T cell colony growth assayed. All the lymphocyte subpopulations were found to generate lymphocyte colony enhancement factor (LCEF). After several purification procedures, CM prepared from CD4 and CD8+, displayed LCEF activity corresponding to proteins of molecular weight 30-40 and 100-140 kD.  相似文献   

13.
14.
15.
Carbonic anhydrases, catalysing the reversible CO2 hydration reaction, contribute in all living organisms to the maintenance of stable metabolic functions depending on intracellular concentrations of carbon dioxide, bicarbonate, and protons. Recent studies have examined how CAs affect bacterial lifecycle, considering these enzymes druggable targets due to interference with their activities by using inhibitors or activators. Here, we propose Escherichia coli cells as a model for testing the effect of acetazolamide (AZA), a potent CA inhibitor, on bacterial survival by evaluating E. coli growth through its glucose consumption. AZA, at concentrations higher than 31.2 µg/mL, was able to impair E. coli growth and glucose uptake. AZA is a good inhibitor of the two recombinant E. coli CAs, the β-CA CynT2, and the γ-CA EcoCAγ, with KIs of 227 and 248 nM, respectively. This study provides a proof-of-concept, low-cost method for identifying effective CA inhibitors capable of impairing bacterial metabolism.  相似文献   

16.
The growth kinetics of a cancer cell population as a function of the total number of cells and the proportion of proliferating and resting cells at the beginning of the growth has been analysed by a mathematical model. The model takes into account the processes of cell division, death and transition from proliferation to rest and backwards. It is shown that a single cell population growing under the same environmental conditions has an extremely broad spectrum of growth patterns. The whole multiplicity of possible growth patterns has been determined by the inherent cellular growth characteristics of the population, while the growth pattern actually realized of the variety of growth curves depends on the total number of cells and the proportion of proliferating and resting cells at the initial moment of growth. The model is shown to provide a good prediction of experimentally measured kinetics of regrowth of tumour cells subcultured after various times of the growth in unfed cultures, and the kinetics of tumour cell growth after severe hypoxia. The role of cell transitions between proliferating and resting stages in the problem of growth control is discussed.  相似文献   

17.
Developmental control of cell morphogenesis: a focus on membrane growth   总被引:1,自引:0,他引:1  
To date, the role of transport and insertion of membrane in the control of membrane remodelling during cell and tissue morphogenesis has received little attention. In contrast, the contributions of cytoskeletal rearrangements and both intercellular and cell-substrate attachments have been the focus of many studies. Here, we review work from many developmental systems that highlights the importance of polarized membrane growth and suggests a general model for the role of endocytic recycling during cell morphogenesis. We also address how the spatio-temporal control of membrane insertion during development can account for various classes of tissue rearrangements. We suggest that tubulogenesis, tissue spreading and cell intercalation stem mostly from a remarkably small number of cell intrinsic surface remodelling events that confer on cells different modes of migratory behaviours.  相似文献   

18.
Proteus mirabilis forms a concentric-ring colony by undergoing periodic swarming. A colony in the process of such synchronized expansion was examined for its internal population structure. In alternating phases, i.e., swarming (active migration) and consolidation (growth without colony perimeter expansion), phase-specific distribution of cells differing in length, in situ mobility, and migration ability on an agar medium were recognized. In the consolidation phase, the distribution of mobile cells was restricted to the inner part of a new ring and a previous terrace. Cells composing the outer part of the ring were immobile in spite of their ordinary swimming ability in a viscous solution. A sectorial cell population having such an internal structure was replica printed on fresh agar medium. After printing, a transplant which was in the swarming phase continued its ongoing swarming while a transplanted consolidation front continued its scheduled consolidation. This shows that cessation of migration during the consolidation phase was not due to substances present in the underlying agar medium. The ongoing swarming schedule was modifiable by separative cutting of the swarming front or disruption of the ring pattern by random mixing of the pattern-forming cell population. The structured cell population seemed to play a role in characteristic colony growth. However, separation of a narrow consolidation front from a backward area did not induce disturbance in the ongoing swarming schedule. Thus, cells at the frontal part of consolidation area were independent of the internal cell population and destined to exert consolidation and swarming with the ongoing ordinary schedule.  相似文献   

19.
A polygonization-based method is used to estimate the fractal dimension and several new scalar lacunarity features from digitized transmission electron micrographs (TEM) of mouse liver cell nuclei. The fractal features have been estimated in different segments of 1D curves obtained by scanning the 2D cell nuclei in a spiral-like fashion called "peel-off scanning". This is a venue to separate estimates of fractal features in the center and periphery of a cell nucleus. Our aim was to see if a small set of fractal features could discriminate between samples from normal liver, hyperplastic nodules and hepatocellular carcinomas. The Bhattacharyya distance was used to evaluate the features. Bayesian classification with pooled co-variance matrix and equal prior probabilities was used as the rule for classification. Several single fractal features estimated from the periphery of the cell nuclei discriminated samples from the hyperplastic nodules and hepatocellular carcinomas from normal ones. The outer 25-30% of the cell nuclei contained important texture information about the differences between the classes. The polygonization-based method was also used as an analysis tool to relate the differences between the classes to differences in the chromatin structure.  相似文献   

20.
M Asgari  H R Henney 《Cytobios》1977,20(79-80):163-177
Slime secreted by microplasmodia of the myxomycete Physarum flavicomum inhibited the uptake of glucose and amino acids, as well as growth and cell division of the bacterium Bacillus subtilis. Morphological changes such as production of chains, swollen cells, and/or cell lysis, occurred coincident with these physiological inhibitory events. These phenomena were all dependent on the concentration of slime present in the growth medium. Electron microscopy revealed that the cell walls of slime-inhibited cells were undergoing degradation and the process was most pronounced in the swollen cells. Isolated cell walls of B. subtilis were also found to undergo degradation upon incubation with slime. Boiled slime did not exhibit lytic activity on native cell walls, but boiled cell walls were degraded by native slime. The inhibitory effect of slime seemed to be, at least in part, due to an inherent peptidase (protease) activity. B. subtilis eventually overcomes the inhibition exhibited by slime due to the production of an antagonist of slime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号