首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix. By use of MALDI-TOF mass spectrometry, CrkII was identified as a protein that specifically bound to Tyr900 in a phosphorylation dependent manner, possibly via the p85 subunit of PI3-kinase. Expression of a mutant receptor where Tyr900 had been replaced with a phenylalanine residue (Y900F) resulted in a receptor with reduced ability to phosphorylate CrkII. Together these data support a model where c-Src phosphorylates the receptor, thereby creating docking sites for SH2 domain containing proteins, leading to recruitment of Crk to the receptor.  相似文献   

2.
Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.  相似文献   

3.
Most Src family members are diacylated and constitutively associate with membrane "lipid rafts" that coordinate signalling. Whether the monoacylated Src, frequently hyperactive in carcinomas, also localizes at "rafts" remains controversial. Using polarized MDCK cells expressing the thermosensitive v-Src/tsLA31 variant, we here addressed how Src tyrosine-kinase activation may impact on its (i) membrane recruitment, in particular to "lipid rafts"; (ii) subcellular localization; and (iii) signalling. The kinetics of Src-kinase thermoactivation correlated with its recruitment from the cytosol to sedimentable membranes where Src largely resisted solubilisation by non-ionic detergents at 4 degrees C and floated into sucrose density gradients like caveolin-1 and flotillin-2, i.e. "lipid rafts". By immunofluorescence, activated Src showed a dual localization, at apical endosomes/macropinosomes and at the apical plasma membrane. The plasma membrane Src pool did not colocalize with caveolin-1 and flotillin-2, but extensively overlapped GM1 labelling by cholera toxin. Severe ( approximately 70%) cholesterol extraction with methyl-beta-cyclodextrin (MbetaCD) did not abolish "rafts" floatation, but strongly decreased Src association with floating "rafts" and abolished its localization at the apical plasma membrane. Src activation independently activated first the MAP-kinase - ERK1/2 pathway, then the PI3-kinase - Akt pathway. MAP-kinase - ERK1/2 activation was insensitive to MbetaCD, which suppressed Akt phosphorylation and apical endocytosis induced by Src, both depending on the PI3-kinase pathway. We therefore suggest that activated Src is recruited at two membrane compartments, allowing differential signalling, first via ERK1/2 at "non-raft" domains on endosomes, then via PI3-kinase-Akt on a distinct set of "rafts" at the apical plasma membrane. Whether this model is applicable to c-Src remains to be examined.  相似文献   

4.
Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.  相似文献   

5.
6.
    
The Nef protein of the human immunodeficiency virus type 1 (HIV‐1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV‐1 Nef in human macrophages cell line modulates in bi‐phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef‐induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef‐mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3‐binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef‐induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47phox to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef‐mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3‐kinase (PI3K) inhibited both the Nef‐induced p47phox phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K. J. Cell. Biochem. 106: 812–822, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Starting from thienobenzopyran HTS hit 1, co-crystallization, molecular modeling and metabolic analysis were used to design potent and metabolically stable inhibitors of PI3-kinase. Compound 15 demonstrated PI3K pathway suppression in a mouse MCF7 xenograft model.  相似文献   

8.
9.
10.
    
SH2 domains are widespread protein‐binding modules that recognize phosphotyrosines and play central roles in intracellular signalling pathways. The SH2 domain of the human protein tyrosine kinase Fyn has been expressed, purified and crystallized in the unbound state and in complex with a high‐affinity phosphotyrosine peptide. X‐ray data were collected to a resolution of 2.00 Å for the unbound form and 1.40 Å for the protein in complex with the phosphotyrosine peptide.  相似文献   

11.
Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2α) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2α mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2α was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2α can modulate HCC cell growth.  相似文献   

12.
13.
Signet-ring cell carcinoma is one of the most malignant tumors, classified histologically as a poorly differentiated adenocarcinoma. The ErbB2/ErbB3 complex is often constitutively activated, which suggests that the ErbB2/ErbB3 signaling pathway may be important for malignancy of this tumor. However, the mechanism underlying this activation has not been understood. Here, we show that ErbB2 and Muc4 bind in signet ring carcinoma cells, which was not seen in highly differentiated adenocarcinoma cell lines. ErbB3 was suggested to be a substrate of ErbB2 because knockdown of ErbB2 resulted in less phosphorylation of ErbB3. Inhibition of expression of Muc4 at the cell surface by the treatment of the cells with benzyl-GalNac, an inhibitor of mucin secretion, blocked phosphorylation of ErbB3, suggesting that activity of ErbB2 depends on the expression of Muc4. These results supply the biochemical backgrounds in recent studies suggesting the contribution of Muc4 in the tumorigenesis.  相似文献   

14.
The efficacy of mesenchymal stem cell (MSC) therapy for myocardial regeneration is limited by the poor survival of stem cells after transplantation into the infarcted heart. To improve the cell survival of MSCs in the infarcted heart, MSCs were genetically engineered to overexpress phosphoinositide-3-kinase class II alpha (PI3K-C2α). PI3K-C2α overexpression increased PI3K expression and the cell viability of MSCs. Furthermore, levels of survival-related phosphorylation were elevated in PI3K-C2α-MSCs. But, the level of apoptotic proteins downregulated and the number of PI-positive cells decreased in PI3K-C2α-MSCs compared to hypoxic MSCs. Nine rats per group had 1 × 106 cells (20 μl PBS) transplanted after myocardial infarction. One week after transplantation, infarct size and area of fibrosis were reduced in the PI3K-C2α-MSC-transplanted group. The number of TUNEL positive cells declined, while the mean microvessel count per field was higher in the PI3K-C2α-MSC group than the MSC-injected group. Heart function was improved in the PI3K-C2α-MSCs group as assessed using a Millar catheter at 3 weeks after transplantation. These findings suggest that overexpression of PI3K-C2α in MSCs can assist cell survival and enhance myocardial regeneration.  相似文献   

15.
We studied the axonal transport characteristics of major cytoskeletal proteins: tubulin, the 69,000 molecular weight protein of chicken neurofilaments, and actin. After intracerebral injection of [35S]methionine, we monitored the specific radioactivity of these proteins as they passed through a very short nerve segment of the chicken oculomotor nerve. Specific radioactivities were assessed by quantitative sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. The transport patterns obtained for tubulin and the neurofilament protein were very similar, corresponding to transport rate ranges of 1-15 and 1-10 mm/day, respectively. A narrower velocity range of 3 to 4.3 mm/day was found for actin. Tubulin and the neurofilament protein appeared to be largely dispersed during the course of their transit along the nerve. The radioactivity associated with the proteins studied persisted in the nerve segment for a long time after the bulk of the labeled molecules had swept down. Finally, none of these proteins was observed to be transported with the fast axonal transport.  相似文献   

16.
17.
    
The reactive metabolites of benzo[a]pyrene (B[a]P) and cyclopenta[c,d]pyrene (CPP) induced an accumulation/phosphorylation of p53 in Hepa1c1c7 cells, whereas inhibition of p53 reduced the apoptosis. Judged by the inhibiting effect of wortmannin, phosphatidyl-inositol-3 (PI-3) kinases such as DNA-dependent protein kinase (DNA-PK), ATM (ataxia-telangiectasia mutated), and/or ATR (ATM related kinase), appeared to be involved in the DNA damage recognition and the B[a]P-/CPP-induced accumulation of p53. B[a]P and CPP also induced phosphorylation of jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). While inhibition of JNK had no effects on the B[a]P-/CPP-induced apoptosis, inhibition of p38 MAPK activity reduced this effect. Interestingly, survival signals such as phosphorylation of Akt and Bad seemed to be induced by the B[a]P-/CPP-compounds. Furthermore, also extracellular signal-regulated kinase (ERK)1/2 was activated and seemed to function as a survival signal in B[a]P-/CPP-induced apoptosis.  相似文献   

18.
19.
Reck is a membrane-anchored glycoprotein identified as a transformation suppressor. Accumulating evidence indicates that Reck negatively regulates a wide spectrum of matrix metalloproteinases and is commonly down-regulated in a variety of malignant solid tumors. Physiological cues that regulate Reck expression, however, remained unknown. In this study, we found that Reck expression was up-regulated at high cell density, low serum, or after treatment with some kinase inhibitors, such as PP2 (Src inhibitor), LY294002 (PI3-kinase inhibitor), and PF573228 (FAK inhibitor), in mouse embryo fibroblasts. Curve fitting indicated that the levels of Reck protein and Reck mRNA are quadratic in the cell density. Other factors, including serum, extracellular matrix components (type I collagen and fibronectin), the kinase inhibitors, and some of their oncogenic targets (v-Src and PIK3CA mutants), modify the shape of the quadratic curve. Comparison of these modifications implicated Src in Reck down-regulation under sparse conditions, PI3-kinase in serum-induced Reck down-regulation, and FAK in Reck down-regulation at high cell density. Fibronectin and type I collagen down-regulated Reck, supporting the role of integrin-FAK signaling in Reck down-regulation at high cell density. Our study has revealed multiple signaling pathways impinging on Reck in cultured mouse embryo fibroblasts and sets a foundation for future studies to find effective Reck inducers of potential value in cancer therapy.  相似文献   

20.
Human EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved. Whereas expression of mouse Eat2a mRNA was detected in multiple tissues, Eat2b was only detectable in mouse natural killer cells, CD8+ T cells, and ovaries, suggesting a very restricted tissue expression of the latter. Both the EAT-2A and EAT-2B coimmunoprecipitated with mouse SLAM in transfected cells and augmented tyrosine phosphorylation of the cytoplasmic tail of SLAM. Both EAT-2A and EAT-2B bind to the Src-like kinases Fyn, Hck, Lyn, Lck, and Fgr, as determined by a yeast two-hybrid assay. However, unlike SAP, the EAT-2 proteins bind to their kinase domains and not to the SH3 domain of these kinases. Taken together, the data suggest that both EAT-2A and EAT-2B are adapters that recruit Src kinases to SLAM family receptors using a mechanism that is distinct from that of SAP. Electronic supplementary material Supplementary material is available for this article at and accessible for authorised users. S. Calpe and E. Erdős contributed equally to this work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号