首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An rDNA size class in the genome of the nematode Ascaris lumbricoides is described which is interrupted by a 4.5-kb long intervening sequence located in the 26S coding region. This molecular form occurs in approximately 15 copies per haploid genome and amounts to approximately 5% of the total nuclear rDNA. Intervening sequences are present only in the 8.8-kb rDNA, but not in the 8.4-kb rDNA repeating units of A. lumbricoides. Cloning of the interrupted rDNA units revealed, in addition to the main 4.5-kb insertion, shorter intervening sequences of 4-kb and 119-bp length. Both shorter rDNA forms are present in the single copy range of the haploid genome. Sequence analyses of the intervening sequence/rDNA junctions show an identical right-hand junction for all of the three different rDNA forms. The two shorter intervening sequences are a coterminal subset of the right-hand end of the main 4.5-kb insertion, whereas all three insertions have a different left-hand junction with the coding region of rDNA. Each intervening sequence is flanked by a short direct repeat of variable length, being only once present in the uninterrupted rDNA. The intervening sequences of A. lumbricoides show striking similarity to the organization of type I insertion family in dipteran flies, even though they are inserted at different positions in the 26S coding region. Additional rDNA intervening sequences may be present outside of the rDNA cluster, but in not more than 15-20 homologous copies per haploid genome.  相似文献   

3.
The X chromosomal nucleolus organizer of Drosophila hydei contains about 500 ribosomal RNA genes. The 28 S rRNA coding region of about 50% of these genes is interrupted by an intervening sequence of 6.0 × 103 base-pairs. Restriction enzyme analysis revealed that more than 90% of the rRNA genes with intervening sequences are present as one or a few clusters within the X chromosomal nucleolus organizer. Furthermore, even though X chromosomal rRNA genes show several distinct size classes of non-transcribed spacers, the cluster of repeating units containing an intervening sequence has major spacer lengths of 4.4 × 103 and 4.6 × 103 base-pairs; spacers 5.1 × 103 base-pairs in length are mainly linked with genes lacking the intervening sequence.  相似文献   

4.
5.
Nucleotide sequence and transcription of a gene encoding human tRNAGlyCCC   总被引:1,自引:0,他引:1  
  相似文献   

6.
In a previous study the alteration in the amino acid sequence of Neurospora crassa NADP-specific glutamate dehydrogenase (GDH) resulting from two mutually compensating frameshift mutations was used to deduce the first 17 nucleotides of the coding sequence of the am gene. In the work reported here, a synthetic 17-mer corresponding to the deduced sequence was shown to hybridize strongly to a 9-kb HindIII fragment from N. crassa wild-type DNA but not to any corresponding fragment from the DNA of a mutant strain known to be deleted for most or all of the gene. Wild-type HindIII fragments were fractionated for size and a fraction centering around 9 kb was cloned in vector λL47. Two clones carrying the strongly hybridizing fragment were identified. The hybridization to the 17-mer was localized within a 2.7-kb BamHI fragment and, within this, to a 700-bp BamHI-BglII subfragment. 5' end-labelled polyadenylated RNA isolated from wild-type mycelium hybridized to the 2.7-kb BamHI fragment and not appreciably to flanking fragments. The partial sequence analysis of the BamHI-BglII fragment has confirmed that the 17-mer probe matches the coding sequence at the 5' end of the gene and has also revealed an intervening sequence 67 bp in length, interrupting codon 15. Both the 9-kb HindIII fragment and the 2.7-kb BamHI fragment have been shown to be capable of transforming the deletion mutant to prototrophy and ability to produce GDH. Analysis of one transformant showed that the am gene was integrated, together with a part of the long arm of the lambda vector, at an unusual locus. This transformant, in which the am gene does not show its normal linkage to the linkage group 5 marker inl, was found to produce GDH to about 20% of the normal level.  相似文献   

7.
M A Wild  J G Gall 《Cell》1979,16(3):565-573
  相似文献   

8.
The RNA molecules transcribed from many eukaryotic genes are interrupted by intervening sequences, which are removed by a process called RNA splicing. One structurally related group of intervening sequences, the group I intervening sequences, are found in a variety of microorganisms. Some of these, including the group I intervening sequence from the ribosomal RNA precursor of Tetrahymena thermophila, have been shown to mediate their own splicing in an RNA-catalyzed reaction. Following its excision from the ribosomal RNA precursor, the Tetrahymena intervening sequence acts as an enzyme, cutting and rejoining RNA substrates.  相似文献   

9.
10.
11.
12.
A late region deletion mutant of simian virus 40 (dl5) was previously shown to be deficient in the transport of nuclear RNA. This is a splice junction deletion that has lost the 3' end of an RNA leader, an intervening sequence, and the 5' end of the splice acceptor site on the body of the mRNA. In this report, we analyzed the steady-state structure of the untransported nuclear RNA. The 5' ends of this RNA are heterogeneous but contain a prominent 5' end at the normal position (nucleotide 325) in addition to several other prominent 5' ends not seen in wild-type RNA. The 3' end of this RNA does not occur at the usual position (nucleotide 2674) of polyadenylation; instead, this RNA is non-polyadenylated, with the 3' end occurring either downstream or upstream of the normal position.  相似文献   

13.
Most repeat units of rDNA in Drosophila virilis are interrupted in the 28S rRNA coding region by an intervening sequence about 10 kb in length; uninterrupted repeats have a length of about 11 kb. We have sequenced the coding/intervening sequence junctions and flanking regions in two independent clones of interrupted rDNA, and the corresponding 28S rRNA coding region in a clone of uninterrupted rDNA. The intervening sequence is terminated at both ends by a direct repeat of a fourteen nucleotide sequence that is present once in the corresponding region of an intact gene. This is a phenomenon associated with transposable elements in other eukaryotes and in prokaryotes, and the Drosophila rDNA intervening sequence is discussed in this context. We have compared more than 200 nucleotides of the D. virilis 28S rRNA gene with sequences of homologous regions of rDNA in Tetrahymena pigmentosa (Wild and Sommer, 1980) and Xenopus laevis (Gourse and Gerbi, 1980): There is 93% sequence homology among the diverse species, so that the rDNA region in question (about two-thirds of the way into the 28S rRNA coding sequence) has been very highly conserved in eukaryote evolution. The intervening sequence in T. pigmentosa is at a site 79 nucleotides upstream from the insertion site of the Drosophila intervening sequence.  相似文献   

14.
15.
16.
B Allet  J D Rochaix 《Cell》1979,18(1):55-60
All of the chloroplast 23S ribosomal genes of C. reinhardii are interrupted by a 0.87 kb sequence (Rochaix and Malnoë, 1978). We have sequenced the DNA across the two ends of this intervening element. In parallel, we have examined the nucleotide sequences in the corresponding part of the 23S ribosomal RNA. This allowed us to locate precisely the boundaries between the coding (that is, transcribed into mature 23S rRNA) and the noncoding DNA. The results show that the intervening sequence is flanked by two identical sets of 3 bp (5′-CGT) oriented as direct repeats. In addition, a sequence of 5 bp (5′-CGTGA) lies exactly next to one end and is found very close (16 bp) to the other end, in the coding part of the gene. These two sets are also oriented as direct repeats. Finally, sequences near one end of the intervening element are found with a few alterations near the other end, but in an inverted orientation. Possible interpretations of these results are discussed.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号