首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of social isolation on behavior, neuroactive steroid concentrations, and GABA(A) receptor function were investigated in rats. Animals isolated for 30 days immediately after weaning exhibited an anxiety-like behavioral profile in the elevated plus-maze and Vogel conflict tests. This behavior was associated with marked decreases in the cerebrocortical, hippocampal, and plasma concentrations of pregnenolone, progesterone, allopregnanolone, and allotetrahydrodeoxycorticosterone compared with those apparent for group-housed rats; in contrast, the plasma concentration of corticosterone was increased in the isolated animals. Acute footshock stress induced greater percentage increases in the cortical concentrations of neuroactive steroids in isolated rats than in group-housed rats. Social isolation also reduced brain GABA(A) receptor function, as evaluated by measuring both GABA-evoked Cl(-) currents in XENOPUS: oocytes expressing the rat receptors and tert-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding to rat brain membranes. Whereas the amplitude of GABA-induced Cl(-) currents did not differ significantly between group-housed and isolated animals, the potentiation of these currents by diazepam was reduced at cortical or hippocampal GABA(A) receptors from isolated rats compared with that apparent at receptors from group-housed animals. Moreover, the inhibitory effect of ethyl-beta-carboline-3-carboxylate, a negative allosteric modulator of GABA(A) receptors, on these currents was greater at cortical GABA(A) receptors from socially isolated animals than at those from group-housed rats. Finally, social isolation increased the extent of [(35)S]TBPS binding to both cortical and hippocampal membranes. The results further suggest a psychological role for neurosteroids and GABA(A) receptors in the modulation of emotional behavior and mood.  相似文献   

2.
We recently reported that adenine acts as a neurotrophic factor independent of adenosine or P2 receptors in cultured Purkinje cells [Watanabe S. et al. (2003) J. Neurosci. Res. 74, 754-759], suggesting the presence of specific receptors for adenine in the brain. In this study, the characterization of adenine-binding activity in the rat brain was performed to further characterize the receptor-like adenine-binding sites. Specific binding sites for [(3)H]adenine were detected in membrane fractions prepared from rat brains. The kinetics of [(3)H]adenine binding to membranes was described by the association and dissociation rate constants, 8.6 x 10(5) M(-1) min(-1) and 0.118 +/- 0.045 min(-1), respectively. A single binding site for [(3)H]adenine with a K (D) of 157.1 +/- 20.8 nM and a B (max) of 16.3 +/- 1.1 pmol/mg protein (n = 6) was demonstrated in saturation experiments. A displacement study involving various related compounds showed that the [(3)H]adenine binding was highly specific for adenine. It was also found that [(3)H]adenine-binding activity was inhibited by adenosine, although other adenosine receptor ligands were ineffective as to [(3)H]adenine binding. The brain, especially the cerebellum and spinal cord, showed the highest [(3)H]adenine-binding activity of the tissues examined. These results are consistent with the presence of a novel adenine receptor in rat brain membranes.  相似文献   

3.
Cannabinoid CB(1) and the metabotropic GABA(B) receptors have been shown to display similar pharmacological effects and co-localization in certain brain regions. Previous studies have reported a functional link between the two systems. As a first step to investigate the underlying molecular mechanism, here we show cross-inhibition of G-protein signaling between GABA(B) and CB(1) receptors in rat hippocampal membranes. The CB(1) agonist R-Win55,212-2 displayed high potency and efficacy in stimulating guanosine-5'-O-(3-[(35)S]thio)triphosphate, [(35)S]GTPgammaS binding. Its effect was completely blocked by the specific CB(1) antagonist AM251 suggesting that the signaling was via CB(1) receptors. The GABA(B) agonists baclofen and SKF97541 also elevated [(35)S]GTPgammaS binding by about 60%, with potency values in the micromolar range. Phaclofen behaved as a low potency antagonist with an ED(50) approximately 1mM. However, phaclofen at low doses (1 and 10nM) slightly but significantly attenuated maximal stimulation of [(35)S]GTPgammaS binding by the CB(1) agonist R-Win55,212-2. The observation that higher concentrations of phaclofen had no such effect rule out the possibility of its direct action on CB(1) receptors. The pharmacologically inactive stereoisomer S-Win55,212-3 had no effect either alone or in combination with phaclofen establishing that the interaction is stereospecific in hippocampus. The specific CB(1) antagonist AM251 at a low dose (1 nM) also inhibited the efficacy of G-protein signaling of the GABA(B) receptor agonist SKF97541. Cross-talk of the two receptor systems was not detected in either spinal cord or cerebral cortex membranes. It is speculated that the interaction might occur via an allosteric interaction between a subset of GABA(B) and CB(1) receptors in rat hippocampal membranes. Although the exact molecular mechanism of the reciprocal inhibition between CB(1) and GABA(B) receptors will have to be explored by future studies it is intriguing that the cross-talk might be involved in balance tuning the endocannabinoid and GABAergic signaling in hippocampus.  相似文献   

4.
The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.  相似文献   

5.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

6.
Neuroactive steroids are potent, selective allosteric modulators of gamma-aminobutyric acid type A (GABA(A)) receptor function in the central nervous system, and may serve as endogenous anxiolytic and analgesic agents. In order to study the influence of subunit subtypes of the GABA(A) receptor on modulation of receptor function by neuroactive steroids, we expressed human recombinant GABA(A) receptors in Xenopus oocytes. GABA-activated membrane current, and the modulatory effects of the endogenous neurosteroid 5alpha-pregnan-3alpha-ol-20-one (allopregnanolone) and the synthetic steroid anesthetic 5alpha-pregnan-3alpha-ol-11,20-dione (alphaxalone) were measured using two-electrode voltage-clamp recording techniques. Allopregnanolone had similar effects to potentiate GABA-activated membrane current in the alpha1beta1gamma2L and alpha1beta2gamma2L receptor isoforms. In contrast, alphaxalone was much more effective as a positive allosteric modulator on the alpha1beta1gamma2L receptor isoform. In the absence of the gamma2L subunit subtype, allopregnanolone had much greater efficacy, but its potency was decreased. Allopregnanolone was much more effective on the alpha1beta1 receptor isoform compared with the alpha1beta2 receptor isoform. The potency for alphaxalone to potentiate the GABA response was not altered in the absence of the gamma2L subunit subtype, although its efficacy was greatly enhanced. Both allopregnanolone and alphaxalone produced nonparallel leftward shifts in the GABA concentration-response relationship in the absence of the gamma2L subunit, decreasing the EC50 concentration of GABA and increasing the maximal response. Only alphaxalone increased the maximal GABA response when the gamma2L subunit subtype was present. The 3beta-pregnane isomers epipregnanolone and isopregnanolone both inhibited the ability of allopregnanolone and alphaxalone to potentiate GABA(A) receptor function. However, the degree of block produced by the 3beta-pregnane steroid isomers was dependent on the type of receptor isoform studied and the neuroactive steroid tested. Isopregnanolone, the 3beta-isomer of allopregnanolone, was significantly more effective as a blocker of potentiation caused by allopregnanolone compared with alphaxalone in all receptor isoforms tested. Epipregnanolone had a greater efficacy as a blocker at the alpha1beta2gamma2L receptor isoform compared with the alpha1beta1gamma2L receptor isoform, and also produced a greater degree of block of potentiation caused by allopregnanolone compared with alphaxalone. Our results support the hypothesis that the heteromeric assembly of different GABA(A) receptor isoforms containing different subunit subtypes results in multiple steroid recognition sites on GABA(A) receptors, which in turn produces distinctly different modulatory interactions between neuroactive steroids acting at the GABA(A) receptor. The alpha and gamma subunit subtypes may have the greatest influence on allopregnanolone modulation of GABA(A) receptor function, whereas the beta and gamma subunit subtypes appear to be most important for the modulatory effects of alphaxalone.  相似文献   

7.
8.
Two invariant tryptophan residues on the N-terminal extracellular region of the rat alpha1 subunit, Trp-69 and Trp-94, are critical for the assembly of the GABA(A) (gamma-aminobutyric acid, type A) receptor into a pentamer. These tryptophans are common not only to all GABA(A) receptor subunits, but also to all ligand-gated ion channel subunits. Converting each Trp residue to Phe and Gly by site-directed mutagenesis allowed us to study the role of these invariant tryptophan residues. Mutant alpha1 subunits, coexpressed with beta2 subunits in baculovirus-infected Sf9 cells, displayed high affinity binding to [(3)H]muscimol, a GABA site ligand, but no binding to [(35)S]t-butyl bicyclophosphorothionate, a ligand for the receptor-associated ion channel. Neither [(3)H]muscimol binding to intact cells nor immunostaining of nonpermeabilized cells gave evidence of surface expression of the receptor. When expressed with beta2 and gamma2 polypeptides, the mutant alpha1 polypeptides did not form [(3)H]flunitrazepam binding sites though wild-type alpha1 polypeptides did. The distribution of the mutant receptors on sucrose gradients suggests that the effects on ligand binding result from the inability of the mutant alpha1 subunits to form pentamers. We conclude that Trp-69 and Trp-94 participate in the formation of the interface between alpha and beta subunits, but not of the GABA binding site.  相似文献   

9.
The interaction of isoproterenol with beta-adrenergic receptor (beta AR) binding sites was measured in membranes prepared from rat brain cerebral cortical slices previously incubated in the presence or absence of gamma-aminobutyric acid (GABA) receptor agonists. Both GABA and baclofen, but not isoguvacine, altered beta AR agonist binding by increasing the affinity of both the low- and high-affinity binding sites and by increasing the proportion of low-affinity receptors. The response to baclofen was stereoselective, and the effect of GABA was not inhibited by bicuculline. The results suggest that GABAB, but not GABAA, receptor activation modifies the coupling between beta AR and stimulatory guanine nucleotide-binding protein, which may in part explain the ability of baclofen to augment isoproterenol-stimulated cyclic AMP accumulation in brain slices.  相似文献   

10.
In the presence of 1 microM atrial natriuretic factor (ANF) and low (0.1 mM) Mg2+ concentrations, the initial rate of binding of [3H]guanosine 5'-[beta, gamma-imido)triphosphate [( 3H]p[NH]ppG) to rat lung plasma membranes was increased twofold to threefold. ANF-dependent stimulation of the initial rate of [3H]p[NH]ppG binding was reduced at high (5 mM) Mg2+ concentrations. Preincubation of membranes with p[NH]ppG (5 min at 37 degrees C) eliminated the ANF-dependent effect on [3H]p[NH]ppG binding whereas ANF-dependent [3H]p[NH]ppG binding was unaffected by similar pretreatment with guanosine 5'-[beta-thio]diphosphate (GDP[beta S]). An increase in ANF concentration from 10 pM to 1 microM caused a 40% decrease in forskolin-stimulated or isoproterenol-stimulated adenylate cyclase activities (IC50 5 nM) in rat lung plasma membranes. GTP (100 microM) was obligatory for the ANF-dependent inhibition of adenylate cyclase, which could be completely overcome by the presence of 100 microM GDP[beta S] or the addition of 10 mM Mn2+. Reduction of Na2+ concentration from 120 mM to 20 mM had the same effect. Pertussis toxin eliminated ANF-dependent inhibition of adenylate cyclase by catalyzing ADP-ribosylation of membrane-bound Ni protein (41-kDa alpha subunit of the inhibitory guanyl-nucleotide-binding protein of adenylate cyclase). The data support the notion that one of the ANF receptors in rat lung plasma membranes is negatively coupled to a hormone-sensitive adenylate cyclase complex via the GTP-binding Ni protein.  相似文献   

11.
The regulation of pre-synaptic glutamate release is important in the maintenance and fidelity of excitatory transmission in the nervous system. In this study, we report a novel interaction between a ligand-gated ion channel and a G-protein coupled receptor which regulates glutamate release from parallel fiber axon terminals. Immunocytochemical analysis revealed that GABA(A) receptors and the high affinity group III metabotropic glutamate receptor subtype 4 (mGlu4) are co-localized on glutamatergic parallel fiber axon terminals in the cerebellum. GABA(A) and mGlu4 receptors were also found to co-immunoprecipitate from cerebellar membranes. Independently, these two receptors have opposing roles on glutamate release: pre-synaptic GABA(A) receptors promote, while mGlu4 receptors inhibit, glutamate release. However, coincident activation of GABA(A) receptors with muscimol and mGlu4 with the agonist (2S)-S-2-amino-4-phosphonobutanoic acid , increased glutamate release from [(3) H]glutamate-loaded cerebellar synaptosomes above that observed with muscimol alone. Further support for an interaction between GABA(A) and mGlu4 receptors was obtained in the mGlu4 knockout mouse which displayed reduced binding of the GABA(A) ligand [(35) S]tert-butylbicyclophosphorothionate, and decreased expression of the α1, α6, β2 GABA(A) receptor subunits in the cerebellum. Taken together, our data suggest a new role for mGlu4 whereby simultaneous activation with GABA(A) receptors acts to amplify glutamate release at parallel fiber-Purkinje cell synapses.  相似文献   

12.
Tritiated meta-sulfonate benzene diazonium ([3H]MSBD), a molecule structurally related to 4-aminobutyrate (GABA), which presents a reactivity toward nucleophilic amino acid residues, was synthesized to investigate the GABA binding site on the GABAA receptor. Irreversible labeling reactions using [3H]MSBD were performed on purified GABAA receptors isolated from cow brain membranes and labeled receptors were analyzed by SDS/PAGE. [3H]MSBD was found to be specifically incorporated into proteins in the 45-60 kDa molecular mass range which were identified as alpha1 subunits and beta2/beta3 subunits by immunoprecipitation with subunit-specific antibodies. The specific immunoprecipitation of alpha and beta subunits confirms that binding of [3H]MSBD occurs at the boundary of these subunits. These labeling results confirm the involvement of nucleophilic residues from the beta subunit but reveal also the contribution of yet unidentified nucleophilic residues on the alpha subunit for the GABA binding site.  相似文献   

13.
(R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid (NO 328) has previously been shown to be a potent anticonvulsant in both mice and rats. Here, we report that NO 328 is a potent inhibitor of gamma-[3H]aminobutyric acid [( 3H]GABA) uptake in a rat forebrain synaptosomal preparation (IC50 = 67 nM) and in primary cultures of neurons and astrocytes. Inhibition of [3H]GABA uptake by NO 328 is apparently of a mixed type when NO 328 is preincubated before [3H]GABA uptake; the inhibition is apparently competitive without preincubation. NO 328 itself is not a substrate for the GABA uptake carrier, but NO 328 is a selective inhibitor of [3H]GABA uptake. Binding to benzodiazepine receptors, histamine H1 receptors, and 5-hydroxytryptamine1A receptors was inhibited by NO 328 at 5-30 microM, whereas several other receptors and uptake sites were unaffected. [3H]NO 328 showed saturable and reversible binding to rat brain membranes in the presence of NaCl. The specific binding of [3H]NO 328 was inhibited by known inhibitors of [3H]GABA uptake; GABA and the cyclic amino acid GABA uptake inhibitors were, however, less potent than expected. This indicates that the binding site is not identical to, but rather overlapping with, the GABA recognition site of the uptake carrier. The affinity constant for binding of [3H]NO 328 is 18 nM, and the Bmax is 669 pmol/g of original rat forebrain tissue. The regional distribution of NaCl-dependent [3H]NO 328 binding followed that of synaptosomal [3H]GABA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The binding of [3H]flunitrazepam to benzodiazepine receptors in synaptic membranes and a digitonin-solubilized receptor fraction of rat brain is increased by avermectin B1a and gamma-aminobutyric acid (GABA). The effects of avermectin B1a and GABA are both sensitive to inhibition by (+)-bicuculline. Avermectin B1a and GABA both decrease the Kd and increase the Bmax of [3H]flunitrazepam binding to membranes. Kinetic analysis of the binding of [3H]flunitrazepam to rat brain membranes indicates that avermectin B1a and GABA reduce the rate constants of both association and dissociation between the ligand and the receptor. These results suggest a similar mechanism of modulation of benzodiazepine binding by avermectin B1a and GABA. This modulation may involve in interaction among the receptors for benzodiazepine, GABA and avermectin B1a.  相似文献   

15.
Activation of epidermal growth factor (EGF) receptors stimulates inositol phosphate production in rat hepatocytes via a pertussis toxin-sensitive mechanism, suggesting the involvement of a G protein in the process. Since the first event after receptor-G protein interaction is exchange of GTP for GDP on the G protein, the effect of EGF was measured on the initial rates of guanosine 5'-O-(3-[35S]thiotriphosphate) [( 35S]GTP gamma S) association and [alpha-32P]GDP dissociation in rat hepatocyte membranes. The initial rate of [35S]GTP gamma S binding was stimulated by EGF, with a maximal effect observed at 8 nM EGF. EGF also increased the initial rate of [alpha-32P]GDP dissociation. The effect of EGF on [35S]GTP gamma S association was blocked by boiling the peptide for 5 min in 5 mM dithiothreitol or by incubation of the membranes with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S). EGF-stimulated [35S]GTP gamma S binding was completely abolished in hepatocyte membranes prepared from pertussis toxin-treated rats and was inhibited in hepatocyte membranes that were treated directly with the resolved A-subunit of pertussis toxin. The amount of guanine nucleotide binding affected by occupation of the EGF receptor was approximately 6 pmol/mg of membrane protein. Occupation of angiotensin II receptors, which are known to couple to G proteins in hepatic membranes, also stimulated [35S]GTP gamma S association with and [alpha-32P]GDP dissociation from the membranes. The effect of angiotensin II on [alpha-32P]GDP dissociation was blocked by the angiotensin II receptor antagonist [Sar1,Ile8]angiotensin II, demonstrating that the guanine nucleotide binding was receptor-mediated. In A431 human epidermoid carcinoma cells, EGF stimulates inositol lipid breakdown, but the effect is not blocked by treatment of the cells with pertussis toxin. In these cells, EGF had no effect on [35S]GTP gamma S binding. Occupation of the beta-adrenergic receptor in A431 cell membranes with isoproterenol did stimulate [35S] GTP gamma S binding, and the effect could be completely blocked by l-propranolol. These results support the concept that in hepatocyte membranes, EGF receptors interact with a pertussis toxin-sensitive G protein via a mechanism similar to other hormone receptor-G protein interactions, but that in A431 human epidermoid carcinoma cells, EGF may activate phospholipase C via different mechanisms.  相似文献   

16.
The adrenergic receptors of rat pineal gland were investigated using radiolabeled ligand binding and photoaffinity labeling techniques. 125I-2-[beta-(4-hydroxyphenyl)ethylaminomethyl]tetralone (125I-HEAT) and 125I-cyanopindolol (125I-CYP) labeled specific sites on rat pineal gland membranes with equilibrium dissociation constants (KD) of 48 (+/- 5) pM and 30 (+/- 5) pM, respectively. Binding site maxima were 481 (+/- 63) and 1,020 (+/- 85) fmol/mg protein. The sites labeled by 125I-HEAT had the pharmacological characteristics of alpha 1-adrenergic receptors. 125I-CYP-labeled beta-adrenergic receptors were characterized as a homogeneous population of beta 1-adrenergic receptors. The alpha 1- and beta 1-adrenergic receptors were covalently labeled with the specific photoaffinity probes 4-amino-6,7-dimethoxy-2-(4-[5-(4-azido-3-[125I]iodophenyl) pentanoyl]-1-piperazinyl) quinazoline (125I-APDQ) and 125I-p-azidobenzylcarazolol (125I-pABC). 125I-APDQ labeled an alpha 1-adrenergic receptor peptide of Mr = 74,000 (+/- 4,000), which was similar to peptides labeled in rat cerebral cortex, liver, and spleen. 125I-pABC labeled a single beta 1-adrenergic receptor peptide with a Mr = 42,000 (+/- 1,500), which differed from the 60-65,000 peptide commonly seen in mammalian tissues. Possible reasons for these differences are discussed.  相似文献   

17.
Acyclic noncompetitive antagonists of ionotropic gamma-aminobutyric acid (GABA) receptors, bearing an ester or ether linkage, were designed, synthesized, and assayed for their inhibition of the specific binding of [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a radiolabeled noncompetitive antagonist, to rat brain and housefly head membranes. 5-[4-(3,3-Dimethylbutoxycarbonyl)phenyl]-4-pentynoic acid (DBCPP), a butyl benzoate analogue, was found to competitively inhibit the binding of [3H]EBOB in rat brain membranes, with an IC50 of 88 nM. The potency conferred by the p-substituent decreased in the order C(triple bond)C(CH2)2COOH > C(triple bond)C(CH2)2COOCH3 > C(triple bond) CH > Br. Pentyl phenyl ethers were equally potent compared with butyl benzoates, while phenyl pentanoates and benzyl butyl ethers were less pont. These compounds were generally less active in housefly head membranes than in rat brain membranes. The introduction of an isopropyl group into the 1-position of the 3,3-dimethylbutyl group of a butyl benzoate and two benzyl butyl ethers caused an increase in potency in housefly GABA receptors, whereas this modification at the corresponding position of other compounds led to an unchanged or decreased potency. In the case of rat receptors, this modification resulted in a decrease in potency except for a phenyl pentanoate. To confirm that DBCPP interferes with GABA receptor function, we performed whole-cell patch clamp experiments with rat dorsal root ganglion neurons in the primary culture. Repeated co-applications of GABA and DBCPP suppressed GABA-induced whole-cell currents with an IC50 of 0.54 microM and a Hill coefficient of 0.7. These findings indicate that DBCPP and its derivatives inhibit ionotropic GABA receptors by binding to the EBOB site and that there might be structural difference in the noncompetitive antagonist-binding site between rat and housefly GABA receptors.  相似文献   

18.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

19.
The structure of the human beta-adrenergic receptor in purified basal membranes of human placental syncytiotrophoblast was probed using photoaffinity labeling. Basal membranes display a high specific activity of receptors (4-5 pmol/mg protein) and possess both beta 1- and beta 2-adrenergic receptors subtypes. Autoradiography of membranes that were incubated with the beta-adrenergic antagonist [125I]iodoazidobenzylpindolol, photolyzed and then subjected to sodium dodecylsulfate-polyacrylamide gel electrophoresis, identified four radiolabeled peptides, Mr = 65-kDa, 54-kDa, 43-kDa and a novel higher molecular weight 76-kDa form of the receptor. Photoaffinity labeling of each of these four peptides displayed the pharmacological properties expected for true beta-adrenergic receptors. The 76-kDa photoaffinity labeled receptor peptide observed in human placenta basal membranes has not been reported elsewhere. Competition studies with the beta1-selective ligand CGP-20712A demonstrate that the photoaffinity labeled receptor peptides are composed of both beta 1- and beta 2-adrenergic receptor subtypes.  相似文献   

20.
Specific binding of [35S]t-butylbicyclophosphorothionate (TBPS) to rat brain membranes (RBM) is enhanced nine-fold by EDTA/water dialysis and 1.3- to 4.2-fold by 50 nM ketosteroid R 5135, or 5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or related piperazine-N-alkanesulfonate buffers, or extensive washing with NaCl/Na phosphate or Na phosphate/citrate solution. About one-fifth of the [35S]TBPS binding capacity appears in the soluble fraction whereas the rest remains in particulate form on treatment of the EDTA/water-dialyzed RBM with 20 mM CHAPS. Similar KD values (64-86 nM) are obtained for the original EDTA/water-dialyzed membranes and the CHAPS-treated and/or -solubilized preparations. The Bmax of the EDTA-treated RBM is reduced five-fold on solubilization with CHAPS. The potency for displacement of [35S]TBPS changes in the presence of CHAPS or on CHAPS solubilization: gamma-aminobutyric acid (GABA) and muscimol inhibit specific [35S]TBPS binding more strongly in the absence than in the presence of CHAPS: TBPS, picrotoxinin, and photoheptachlor epoxide are almost equally active with RBM, RBM + CHAPS, and RBM solubilized with CHAPS. Levels of (1R, alpha S)-cis-cypermethrin and dimethylbutylbarbiturate which are inhibitory with RBM are moderately stimulatory after TBPS receptor solubilization. Thus CHAPS defines three regions of the GABA receptor-ionophore complex, i.e., the GABA and benzodiazepine receptors, the TBPS/picrotoxinin/polychlorocycloalkane receptor(s), and the sites at which the alpha-cyano pyrethroid and the barbiturate interact with TBPS binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号