首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

2.
The fatty acid composition of microsomal lipids and the activities of Δ9- and Δ6-desaturases in liver microsomes of rats fed diets supplemented with β-carotene and two levels of 13-cis-retinoic acid were studied. Four groups of male, weanling rats were fed semipurified diets containing 0 or 100 mg β-carotene per kg diet, and 20 or 100 mg 13-cis-retinoic acid per kg diet. After 11 weeks of feeding, the rats were killed, liver microsomes were prepared and assayed for Δ9-desaturase and Δ6-desaturase activities. The activity of Δ9-desaturase was lower in liver microsomes of rats fed β-carotene-supplemented diet or the diet supplemented with the higher level of 13-cis-retinoic acid. Microsomal Δ6-desaturase activity was, however, higher in liver of rats fed 13-cis-retinoic acid; there was no effect of β-carotene on Δ6-desaturase activity. The fatty acid compositional data on total lipids of liver microsomes were consistent with the diet-induced changes in fatty acid desaturases. Phospholipid composition of liver microsomes was also altered as a result of feeding β-carotene or 13-cis-retinoic acid-containing diets. The proportions of phosphatidylethanolamine were generally higher, whereas those of phosphatidylcholine were lower in the experimental groups as compared with the control.  相似文献   

3.
Summary The possible property of fatty acid-binding proteins (FABPs) to transport fatty acid was investigated in various model systems with FABP preparations from liver and heart. An effect of FABP, however, was not detectable with a combination of oleic acid-loaded mitochondria and vesicles or liposomes due to the rapid spontaneous transfer. Therefore, the mitochondria were separated from the vesicles in an equilibrium dialysis cell. The spontaneous fatty acid transfer was much lower and addition of FABP resulted in an increase of fatty acid transport. Oleic acid was withdrawn from different types of monolayers by FABP with rates up to 10%/min. When two separate monolayers were used, FABP increased fatty acid transfer between these monolayers and an equilibrium was reached.Abbreviations FABP(s) fatty acid-binding protein(s) - PC phosphatidylcholine - PS phosphatidylserine - PE phosphatidylethanolamine  相似文献   

4.
1. The fatty acid (FA) composition of Daphnia galeata and their algal food was analysed and showed many similarities, however, some significant differences were also found in the relative abundance of the FA C16 : 4ω3 and docosahexaenoic acid (DHA). Their relative abundances were much lower in daphnids than in their algal diet.
2. When daphnids were fed three distinct emulsion particles with DHA : eicosapentaenoic acid (EPA) ratios of c. 0.7, 2 and 4, the final DHA : EPA ratio in the daphnids always favoured EPA. The increase of the food DHA : EPA ratio resulted in a minor increase of DHA (to c. 2%). Feeding the animals on emulsion particles with increasing ratios of DHA : EPA, caused a minor ( c. 2%) increase of DHA level but EPA levels remained high ( c. 10%).
3. When labelled with [14C]linoleic acid and [14C]linolenic acid daphnids showed low conversion of both essential FA into C20 polyunsaturated fatty acids (PUFAs). This low conversion activity might explain the importance of C20 PUFAs as dietary compounds in the food of Daphnia.
4. The results indicate the insignificance of DHA and C16 : 4ω3 for daphnids. As EPA can be derived from C18 : 3ω3 it is not strictly essential, although it might be a significant factor in food quality for Daphnia.  相似文献   

5.
Fatty acids are a major fuel source used to sustain contractile function in heart and oxidative skeletal muscle. To meet the energy demands of these muscles, the uptake and β-oxidation of fatty acids must be coordinately regulated in order to ensure an adequate, but not excessive, supply for mitochondrial β-oxidation. However, imbalance between fatty acid uptake and β-oxidation has the potential to contribute to muscle insulin resistance. The action of insulin is initiated by binding to its receptor and activation of the intrinsic protein tyrosine kinase activity of the receptor, resulting in the initiation of an intracellular signaling cascade that eventually leads to insulin-mediated alterations in a number of cellular processes, including an increase in glucose transport. Accumulation of fatty acids and lipid metabolites (such as long chain acyl CoA, diacylglycerol, triacylglycerol, and/or ceramide) can lead to alterations in this insulin signaling pathway. An imbalance between fatty acid uptake and oxidation is believed to be responsible for this lipid accumulation, and is thought to be a major cause of insulin resistance in obesity and diabetes, due to lipid accumulation and inhibition of one or more steps in the insulin-signaling cascade. As a result, decreasing muscle fatty acid uptake can improve insulin sensitivity. However, the potential role of increasing fatty acid β-oxidation in the heart or skeletal muscle in order to prevent cytoplasmic lipid accumulation and decrease insulin resistance is controversial. While increased fatty acid β-oxidation may lower cytoplasmic lipid accumulation, increasing fatty acid β-oxidation can decrease muscle glucose metabolism, and incomplete fatty acid oxidation has the potential to also contribute to insulin resistance. In this review, we discuss the proposed mechanisms by which alterations in fatty acid uptake and oxidation contribute to insulin resistance, and how targeting fatty acid uptake and oxidation is a potential therapeutic approach to treat insulin resistance.  相似文献   

6.
7.
The localization of β-oxidation of fatty acids in isolated peroxisomes from rat liver was investigated. The enzyme system is soluble in the luminal compartment and carnitine does not appear to be involved in the transfer of the CoA derivatives through the peroxisomal membrane. Experiments involving proteolysis, inhibitors and competitive inhibition suggest that a fatty acid binding protein is responsible for the carrier process. This carrier protein seems to be present in increased amounts both in the supernatant and in the peroxisomes after clofibrate induction.  相似文献   

8.
Lipase-catalyzed synthesis of vitamin C fatty acid esters   总被引:8,自引:0,他引:8  
Fatty acid esters of vitamin C (ascorbic acid) where synthesized in a mainly solid-phase system in the presence of small amounts of organic solvent (acetone or t-butanol) catalyzed by immobilized lipase B from Candida antarctica.Highest reaction rates and yields of isolated products were obtained using fatty acid vinyl esters, e.g., 6-O-palmitoyl-l-ascorbic acid was obtained in 91% isolated yield after 48 h. As vitamin C and its esters are very sensitive to oxidation, a mild extraction method for the isolation of reaction products was developed.  相似文献   

9.
The interactions of fatty acids with porcine and bovine β-lactoglobulins were measured using tryptophan fluorescence enhancement. In the case of bovine β-lactoglobulin, the apparent binding constants for most of the saturated and unsaturated fatty acids were in the range of 10?7 M at neutralpH. Bovine β-lactoglobulin displays only one high affinity binding site for palmitate with an apparent dissociation constant of 1·10?7 M. The strength of the binding was decreasing in the following way: palmitate > stearate > myristate > arachidate > laurate. Caprylic and capric acids are not bound at all. The affinity of β-lactoglobulin for palmitate decreased as thepH of the incubation medium was lowered and BLG/palmitate complex was not observed atpH's lower than 4.5. Surprisingly, chemically modified bovine β-lactoglobulin and porcine β-lactoglobulin did not bind fatty acids in the applied conditions.  相似文献   

10.
Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid composed of 22 carbon atoms and six double bonds. Because the first double bond, as counted from the methyl terminus, is at position three, DHA belongs to the so-called -3 group. In recent years, DHA has attracted much attention because of its beneficial effect on human health. At present, fish oil is the major source of DHA, but alternatively it may be produced by use of microorganisms. Marine microorganisms may contain large quantities of DHA and are considered a potential source of this important fatty acid. Some of these organisms can be grown heterotrophically on organic substrates without light. These processes can be well controlled and DHA with constant quality can be produced all year round. This paper reviews recent advances in the biotechnological production of DHA by marine microorganisms.  相似文献   

11.
12.
FAs play a central role in the metabolism of almost all known cellular life forms. Although GC-MS is regarded as a standard method for FA analysis, other methods, such as HPLC/MS, are nowadays widespread but are rarely applied to FA analysis. Here we present azido-FAs as probes that can be used to study FA biosynthesis (elongation, desaturation) or degradation (β-oxidation) upon their uptake, activation, and metabolic conversion. These azido-FAs are readily accessible by chemical synthesis and their metabolic products can be easily detected after click-chemistry based derivatization with high sensitivity by HPLC/MS, contributing a powerful tool to FA analysis, and hence, lipid analysis in general.  相似文献   

13.
Several mouse models for mitochondrial fatty acid β-oxidation (FAO) defects have been developed. So far, these models have contributed little to our current understanding of the pathophysiology. The objective of this study was to explore differences between murine and human FAO. Using a combination of analytical, biochemical and molecular methods, we compared fibroblasts of long chain acyl-CoA dehydrogenase knockout (LCAD−/−), very long chain acyl-CoA dehydrogenase knockout (VLCAD−/−) and wild type mice with fibroblasts of VLCAD-deficient patients and human controls. We show that in mice, LCAD and VLCAD have overlapping and distinct roles in FAO. The absence of VLCAD is apparently fully compensated, whereas LCAD deficiency is not. LCAD plays an essential role in the oxidation of unsaturated fatty acids such as oleic acid, but seems redundant in the oxidation of saturated fatty acids. In strong contrast, LCAD is neither detectable at the mRNA level nor at the protein level in men, making VLCAD indispensable in FAO. Our findings open new avenues to employ the existing mouse models to study the pathophysiology of human FAO defects.  相似文献   

14.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

15.
To study the specificity of gastric lipases on carotenoid mono- and diesters, an enzymatic assay was applied. Digestions were carried out in phosphate buffer at pH 7.4 and 37 °C. As substrates we employed oleoresins from marigold (Tagetes erecta L.; lutein diesters), red paprika (Capsicum annuum L., mainly capsanthin diesters), papaya (Carica papaya L.; β-cryptoxanthin esters), and loquat (Eriobotrya japonica Lindl.; β-cryptoxanthin esters) as well as retinyl palmitate. These were reacted with porcine pancreatic lipase, porcine pancreatin, porcine cholesterol esterase, and human pancreatic lipase. As reference enzyme a yeast lipase from Candida rugosa was applied. A high turnover could be observed with porcine pancreatic lipase and porcine cholesterol esterase, indicating cholesterol esterase to be a plausible candidate for generation of free carotenoids in the gut. Human pancreatic lipase accepted only retinyl palmitate as substrate, carotenoid mono- and diesters were not hydrolyzed. The assay permits an approach for calculation of enzymatic activities towards carotenoid esters as substrates for the first time, which is based on the amount of enzyme formulation, present in the assay (U/mg solid). Furthermore, these studies provide deeper insight into carotenoid ester bioaccessibility.  相似文献   

16.
Translocation of long chain fatty acids across the plasma membrane is achieved by a concert of co-existing mechanisms. These lipids can passively diffuse, but transport can also be accelerated by certain membrane proteins as well as lipid rafts. Lipid rafts are dynamic assemblies of proteins and lipids, that float freely within the two dimensional matrix of the membrane bilayer. They are receiving increasing attention as devices that regulate membrane function in vivo and play an important role in membrane trafficking and signal transduction. In this review we will discuss how lipid rafts might be involved in the uptake process and how the candidate proteins for fatty acid uptake FAT/CD36 and the FATP proteins interact with these domains. We will also discuss the functional role of FATPs in general. To our understanding FATPs are indirectly involved in the translocation process across the plasma membrane by providing long chain fatty acid synthetase activity.  相似文献   

17.
Chicken liver fatty acid synthetase is rapidly inhibited by 5,5′-dithiobis(2-nitrobenzoi acid). The inhibition results from the reaction of 5,5′-dithiobis(2-nitrobenzoic acid) with the cysteine-SH residue of the β-ketoacyl synthetase site. The adjacent pantetheine-SH of the other subunit displaces 2-nitro-5-thiobenzoic acid from the mixed disulfide resulting in the formation of a disulfide bond between the two residues and thereby cross-linking the two subunits. Scatchard analysis of the 5,5′-dithiobis(2-nitrobenzoic acid) inhibition indicated that there are two β-ketoacyl synthetase sites in the homodimer. The mixed disulfide formed between the pantetheine-SH and the cysteine-SH was reduced by 2-mercaptoethanol resulting in restoration of enzyme activity.  相似文献   

18.
Mitochondrial fatty acids β-oxidation disorder (FAOD) has become popular with development of tandem mass spectrometry (MS/MS) and enzymatic evaluation techniques. FAOD occasionally causes acute encephalopathy or even sudden death in children. On the other hand, hyperpyrexia may also trigger severe seizures or encephalopathy, which might be caused by the defects of fatty acid β-oxidation (FAO). We investigated the effect of heat stress on FAO to determine the relationship between serious febrile episodes and defect in β-oxidation of fatty acid in children. Fibroblasts from healthy control and children with various FAODs, were cultured in the medium loaded with unlabelled palmitic acid for 96 h at 37 °C or 41 °C. Acylcarnitine (AC) profiles in the medium were determined by MS/MS, and specific ratios of ACs were calculated. Under heat stress (at 41 °C), long-chain ACs (C12, C14, or C16) were increased, while medium-chain ACs (C6, C8, or C10) were decreased in cells with carnitine palmitoyl transferase II deficiency, very-long-chain acyl-CoA dehydrogenase deficiency and mitochondrial trifunctional protein deficiency, whereas AC species from short-chain (C4) to long-chain (C16) were barely affected in medium-chain acyl-CoA dehydrogenase and control. While long-chain ACs (C12–C16) were significantly elevated, short to medium-chain ACs (C4–C10) were reduced in multiple acyl-CoA dehydrogenase deficiency. These data suggest that patients with long-chain FAODs may be more susceptible to heat stress compared to medium-chain FAOD or healthy control and that serious febrile episodes may deteriorate long-chain FAO in patients with long-chain FAODs.  相似文献   

19.
20.
Polyunsaturated fatty acid synthesis: what will they think of next?   总被引:1,自引:0,他引:1  
Polyunsaturated fatty acids have crucial roles in membrane biology and signaling processes in most living organisms. However, it is only recently that molecular genetic approaches have allowed detailed studies of the enzymes involved in their synthesis. New evidence has revealed a range of pathways in different organisms. These include a complex sequence for synthesis of docosahexaenoic acid (22:6) in mammals and a polyketide synthase pathway in marine microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号