首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract. Murine adult bone marrow exhibits mineralizing capacity in vitro as is demonstrated by the new in vitro assay we report here. In less than 2 weeks after the onset of the cultures, mineralization is obtained in more than 80% of the marrow cultures. Moreover, morphological studies reveal that during incubation phenotypic changes related to osteogenic differentiation occur at the extracellular matrix as well within cell populations. Well banded collagen is synthesized. Matrix vesicles and needles of hydroxy-apatite crystals are observed via transmission electron microscopy. Osteoblast-like cells are present with membrane-associated alkaline phosphatase activity. the mineralization is specific for cultured bone marrow and is not observed in cultured spleen fragments as is shown via 85Sr uptake, calcein uptake and histomorphology. No inducing agent is added to the tissue culture medium except for 10% fetal calf serum, beta-glycerophosphate (10−2 M) and ascorbic acid. However, the prerequisite for obtaining mineralization is the three-dimensional structure of the marrow in culture. the in vitro organ culture we developed may provide the opportunity to identify which marrow cells have osteogenic potential and to investigate the mechanisms triggering differentiation towards osteogenesis.  相似文献   

2.
Abstract. Adult murine bone marrow cells, cultured under conditions for long-term haemopoietic marrow cultures, produce bone matrix proteins and mineralized tissue in vitro , but only after the adherent stromal cells were loaded on a 3-dimensional collagen sponge. Provided more than 8 × 106 cells are loaded, mineralization as measured by 85Sr uptake from the culture medium, occurred in this 3-dimensional configuration (3-D) within 6 days. In contrast if undisrupted marrow fragments (containing more than 107 cells) are placed directly on a collagen sponge, then it requires more than 10 days before significant mineralization can similarly be detected. The 2-dimensional (2-D) long-term marrow culture system allows prior expansion of the stromal cells and some differentiation in an osteogenic direction within the adherent stromal layer. This is suggested by the presence of type I collagen and alkaline phos-phatase positive cells. However, synthesis of osteonectin and a bone specific protein, osteocalcin, as well as calcification are only observed in 3-D cultures. Electron microscopy demonstrated hydroxyapatite mineral on collagen fibres, osteoblast-like cells, fibroblasts, cells which accumulated lipids, and macrophages which were retained on the collagen matrices. Irradiation of confluent long-term bone marrow cultures, prior to their loading on the collagen sponge showed that haemopoietic stem cells are not necessary for the mineralization.  相似文献   

3.
Interleukin 10 (IL-10) suppressed TGF-beta synthesis in mouse bone marrow cultures. Coincidingly, IL-10 down-regulated the production of bone proteins including alkaline phosphatase (ALP), collagen and osteocalcin, and the formation of mineralized extracellular matrix. The mAb 1D11.16 which neutralizes TGF-beta 1 and TGF-beta 2, induced suppressive effects comparable to IL-10 when administered before the increase of cell proliferation in the culture. It appears that mainly TGF-beta 1 plays a role in this system since (a) TGF-beta 2 levels were undetectable in supernatants from osteogenic cultures, (b) no effect was observed when the anti-TGF-beta 2 neutralizing mAb 4C7.11 was added and (c) the suppressive effect of IL-10 could be reversed by adding exogenous TGF-beta 1. It is unlikely that TGF-beta 1 modulates osteogenic differentiation by changing the proliferative potential of marrow cells since 1D11.16 did not affect [3H]thymidine ([3H]TdR) incorporation or the number of fibroblast colony forming cells (CFU-F) which harbor the osteoprogenitor cell population. Furthermore, 1D11.16 did not alter [3H]TdR uptake by the cloned osteoprogenitor cell lines MN7 and MC3T3. Light and scanning electron microscopy showed that IL-10 and 1D11.16 induced comparable morphological changes in the marrow cultures. Control cultures contained flat adherent cells embedded in a mineralized matrix. In contrast, IL-10 and 1D11.16 treated cultures were characterized by round non-adherent cells and the absence of a mineralized matrix. In this study, the mechanism by which IL-10 suppresses the osteogenic differentiation of mouse bone marrow was identified as inhibition of TGF-beta 1 production which is essential for osteogenic commitment of bone marrow cells.  相似文献   

4.
5.
The controversial effect of autologous serum (AS) on human mesenchymal stem cells (MSC) was studied in rat MSC culture. Rat bone marrow cells were plated in a medium containing either FBS (fetal bovine serum) or AS were cultured to passage 3, during which the population doubling number (PDN) of both cultures were measured and compared statistically. The number of viable cells, the cell colonogic activity, and cell growth rate were also compared. In addition, mineralization in the osteogenic cultures from each system was measured. Our data indicated that AS enriched medium provided a microenvironment in which growth rate as well as bone differentiation of the isolated MSCs were significantly higher than in FBS enriched medium.  相似文献   

6.
7.
The objective of this research was to study osteogenic properties of cultured rabbit bone marrow stromal cells, newborn rat cranium bone cells and rat osteocarcoma ROS 17-2/8 cells. For this purpose cytochemical reaction for alkaline phosphatase was performed by the Lowry method, mineral deposition was assessed by staining of the cultures after von Kossa. Cranium bone cells were shown to synthesize alkaline phosphatase (34 +/- 7 nmol/min/10(6) cells), the matrix mineralization being found. Bone marrow stromal cells displayed a lower activity alkaline phosphatase level than did cranium bone cells (4 +/- 0.6 nmol/min/10(6) cells). However, cell cultivation in the presence of dexamethasone in the medium (10(-8) M) induced a higher activity of alkaline phosphatase (9 +/- 1 nmol/min/10(6) cells), mineralization of the extracellular matrix being the case. The highest level of alkaline phosphatase activity was found for ROS 17-2/8 cells (60 +/- 12 nmol/min/10(6) cells) but no matrix mineralization was determined. According to these data, matrix calcification and formation of bone-like nodules are the most important properties of osteoblastic differentiation in vitro.  相似文献   

8.
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. However, current in vitro methods for the differentiation of human bone marrow stromal cells (HBMSCs) do not, to date, produce homogeneous cell populations of the osteogenic or chondrogenic lineages. As epigenetic modifiers are known to influence differentiation, we investigated the effects of the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) or the histone deacetylase inhibitor trichostatin A (TSA) on osteogenic and chondrogenic differentiation. Monolayer cultures of HBMSCs were treated for 3 days with the 5-aza-dC or TSA, followed by culture in the absence of modifiers. Cells were subsequently grown in pellet culture to determine matrix production. 5-aza-dC stimulated osteogenic differentiation as evidenced by enhanced alkaline phosphatase activity, increased Runx-2 expression in monolayer, and increased osteoid formation in 3D cell pellets. In pellets cultured in chondrogenic media, TSA enhanced cartilage matrix formation and chondrogenic structure. These findings indicate the potential of epigenetic modifiers, as agents, possibly in combination with other factors, to enhance the ability of HBMSCs to form functional bone or cartilage with significant therapeutic implications therein.  相似文献   

9.
Bone tissue composed of typical bone trabeculae containing ground substance with incorporated osteogenic cells and osteoblast layer was formed in organ cultures of bone marrow obtained from adult mice. Electron microscopic properties of the bone formed in vitro were identical to those of the bone tissue in vivo. The mineralization of the bone took place only in the presence of Na-beta-glycerophosphate in the culture medium.  相似文献   

10.
Rat bone marrow stromal cells were cultured in vitro. At days 14-15 of culture, dense clusters of polygonal cells were formed, and they mineralized 2-3 days later. The cells resembling osteoblasts or young osteocytes were histologically observed to be embedded in mineralized or unmineralized extracellular matrices of the nodules. Next, these mineralized nodules were electron-microscopically examined. The osteoblastic cells associated with the nodules had a well-developed rough endoplasmic reticulum, an evident Golgi apparatus and some mitochondria as their intracellular organellae. Some lysosomes and microfilaments were also visible in the cytoplasms. Moreover, some cells protruded cell processes toward the neighboring cells through the extracellular matrix. The extracellular matrix consisted of numerous collagen fibrils which were striated with 60-70 nm axial periodicity and which was similar to bone tissue collagen. A large number of matrix vesicles were scattered among the collagen fibrils in the unmineralized area of the nodules. In contrast, in the mineralized area, numerous matrix vesicles at different stages of maturation and many calcified spherules were observed. That is the mineralization in this culture system was considered to be initiated in association with the matrix vesicles and to progress along the collagen fibrils. From these findings, it was confirmed by the present study that the mineralized nodules formed in this bone marrow stromal cell culture were ultrastructurally similar to bone and that the mineralization also proceeded by going through the normal calcification process. This culture system is considered to be available to study osteogenic differentiation and calcification mechanisms.  相似文献   

11.
Estrogen (E2) deficiency is responsible for increased bone turnover in the postmenopausal period, and it can be prevented by estrogen replacement therapy. The way estrogen acts on bone cells is not fully understood. Human bone marrow cell cultures may be a reliable model for studying the action of steroids on osteoclastogenesis in vitro. We examine the effects of estradiol and Raloxifene, a selective estrogen receptor modulator, on human primary bone marrow cells cultured for 15 days. 17beta-estradiol and Raloxifene significantly decreased the number of tartrate-resistant acid phosphatase multinucleate cells from osteoclast precursors on day 15. Estrogen receptor alpha (ER-alpha) mRNA was present in bone marrow mononuclear cells cultured for 5 days, but there was no estrogen receptor beta (ER-beta) mRNA, suggesting that this effect was mediated by ER-alpha. 15-day cultures no longer contained ER-alpha mRNA, suggesting that estrogen acts on early events of osteoclast differentiation. Finally, 10-8 M 17beta-estradiol has no effect on the release of IL-6 and IL-6-sr into the medium of marrow mononuclear cells cultured for 5 or 15 days. Osteoclast apoptosis was not affected by estradiol or Raloxifene after 15 days of culture under our conditions. In conclusion, we have shown that both estradiol and Raloxifene inhibit osteoclast differentiation in human bone marrow mononuclear cultures. The biological effect that can mimic in vivo differentiation could be mediated through ER-alpha.  相似文献   

12.
Mesenchymal progenitor cells derived from cord blood (unrestringated somatic stem cells, USSC) and bone marrow (mesenchymal stem cells, MSC) are able to differentiate under defined culture conditions into at least bone, cartilage, adipose and muscle cells in vitro. The culture media and other in vitro conditions influence the osteogenic differentiation potency of both cell types. To increase and expand the number of osteoblasts in vitro an optimization of culture conditions is required. The aim of this study was to evaluate different culture media toward their osteogenic promoting capacity on human USSCs and MSCs in vitro. Immunohistochemical stainings against osteonectin (ON), osteopontin (OP) served as markers for an osteoblastic differentiation. Cellular morphology was analysed by light microscopy technique. We found significant differences between bone marrow and cord blood derived stem cells towards an osteoblastic differentiation. Considering the number of osteoblasts MesenCult seems to have advantages in bone marrow progenitor cells, whereas low glucose DMEM and HAMS-F12 promoted an osteoblastic differentiation in cord blood derived cells more than other tested media.  相似文献   

13.
The biomimetic approach of tissue engineering exploits the favorable properties of the extracellular matrix (ECM), to achieve better scaffold performance and tissue regeneration. ECM proteins regulate cell adhesion and differentiation through integrin mediated signal transduction. In the present study, we have examined the role of ECM proteins such as collagen type I, fibronectin, laminin and vitronectin in regulating the proliferation and osteogenic differentiation of bone marrow derived human mesenchymal stem cells (hMSCs). hMSCs were grown on selected ECM protein treated tissue culture plates. The growth kinetics was assessed by calculating the doubling time of the cells on different ECM treated plates. The cells were directed to osteoblast lineage by growing them in osteogenic induction media for 21 day. Differentiation was evaluated at different time points by osteoblast differentiation associated gene expression, alkaline phosphatase (ALP) activity, histochemical staining for mineralized matrix and calcium quantification. The doubling time of hMSCs cultured on collagen type I was significantly low, which was followed by laminin and fibronectin treated plates. However, doubling time of hMSCs cultured on vitronectin treated plate was not significantly different than that of the untreated control. High ALP gene (ALPL) expression and associated enhancement of mineralization were observed on collagen type I, fibronectin and vitronectin treated plates. Collagen type I showed early onset of mineralization with high ALP activity and up-regulation of osteopontin, ALPL, bone sialoprotein and osteocalcin genes. Vitronectin also up-regulated these genes and showed the highest amount of calcium in the secreted mineral matrix. Therefore, we conclude that, ECM proteins indeed modified the growth patterns and induced the osteoblast differentiation of hMSCs. Our findings have significant implication for bone tissue engineering applications.  相似文献   

14.
Osteogenic potential of rat mesenchymal stem cells after several passages   总被引:5,自引:0,他引:5  
Osteogenic potential of serially passaged rat bone marrow derived mesenchymal stem cells (BMCs) was evaluated for clinical feasibility. Osteogenic differentiation in vitro was evaluated by means of the concentration and mRNA expression of alkaline phosphatase and osteocalcin. For in vivo osteogenesis, BMCs in various degrees of differentiation were implanted into the athymic mice. Although elevated levels of osteogenic markers were prominent in the less passaged BMCs continuously cultured with osteogenic supplements (OS group), they decreased with passaging. Similar to the in vitro experiments, abundant bone and cartilage formations inside the membrane were observed in the P0 through P2 cells of the OS group. In the P3 cells, however, the chambers were filled with fibrous tissues showing the failure of osteogenesis. Establishment of the culture conditions that permit the rapid expansion of BMCs while retaining their potential for differentiation will be required for future clinical applications.  相似文献   

15.
CCN3 expression was observed in a broad variety of tissues from the early stage of development. However, a kind of loss of function in mice (CCN3 del VWC domain -/-) demonstrated mild abnormality, which indicates that CCN3 may not be critical for the normal embryogenesis as a single gene. The importance of CCN3 in bone marrow environment becomes to be recognized by the studies of hematopoietic stem cells and Chronic Myeloid Leukemia cells. CCN3 expression in bone marrow has been denied by several investigations, but we found CCN3 positive stromal and hematopoietic cells at bone extremities with a new antibody although they are a very few populations. We investigated the expression pattern of CCN3 in the cultured bone marrow derived mesenchymal stem cells and found its preference for osteogenic differentiation. From the analyses of in vitro experiment using an osteogenic mesenchymal stem cell line, Kusa-A1, we found that CCN3 downregulates osteogenesis by two different pathways; suppression of BMP and stimulation of Notch. Secreted CCN3 from Kusa cells inhibited the differentiation of osteoblasts in separate culture, which indicates the paracrine manner of CCN3 activity. CCN3 may also affect the extracellular environment of the niche for hematopoietic stem cells.  相似文献   

16.
17.
Regulation of osteogenesis by fetuin.   总被引:5,自引:0,他引:5  
  相似文献   

18.
The mesenchymal stromal cell is a multipotent precursor of osteoblasts, adipocytes, and some other cell types. In this study, a comparative analysis of cultured mesenchymal stromal cells from the rat bone marrow at the early and late stages of subculturing has been performed using molecular genetic and cytological methods. The culture has undergone 11 passages during 140 days. Upon long-term culturing, the mesenchymal stromal cells have proved to lose their potential for adipogenic differentiation but preserve the potential for osteogenesis. Morphological characters typical of osteogenic differentiation can be observed at the earlier stages of culturing (passages 1–4) but disappear at later stages (passages 9–11), despite mineralization of the extracellular matrix and the expression of osteogenic differentiation markers. A comparative analysis of the proliferation potential of stromal cells has shown that differences in the period of cell population doubling at the early and later stages of culturing are insignificant. An almost complete arrest of cell growth has been observed in the middle of the culture period (passages 5 and 6).  相似文献   

19.
Mineralized biomaterials are promising for use in bone tissue engineering. Culturing osteogenic cells in such materials will potentially generate biological bone grafts that may even further augment bone healing. Here, we studied osteogenic differentiation of human mesenchymal stem cells (MSC) in an alginate hydrogel system where the cells were co-immobilized with alkaline phosphatase (ALP) for gradual mineralization of the microenvironment. MSC were embedded in unmodified alginate beads and alginate beads mineralized with ALP to generate a polymer/hydroxyapatite scaffold mimicking the composition of bone. The initial scaffold mineralization induced further mineralization of the beads with nanosized particles, and scanning electron micrographs demonstrated presence of collagen in the mineralized and unmineralized alginate beads cultured in osteogenic medium. Cells in both types of beads sustained high viability and metabolic activity for the duration of the study (21 days) as evaluated by live/dead staining and alamar blue assay. MSC in beads induced to differentiate in osteogenic direction expressed higher mRNA levels of osteoblast-specific genes (RUNX2, COL1AI, SP7, BGLAP) than MSC in traditional cell cultures. Furthermore, cells differentiated in beads expressed both sclerostin (SOST) and dental matrix protein-1 (DMP1), markers for late osteoblasts/osteocytes. In conclusion, Both ALP-modified and unmodified alginate beads provide an environment that enhance osteogenic differentiation compared with traditional 2D culture. Also, the ALP-modified alginate beads showed profound mineralization and thus have the potential to serve as a bone substitute in tissue engineering.  相似文献   

20.
Titanium has been utilized in the field of orthopaedic and dental reconstructive surgery, but mineralization through osteogenic differentiation of osteogenic cells on titanium surfaces has not been fully investigated. Here we cultured rat mesenchymal stem cells (MSCs) on the surfaces of titanium dishes in osteogenic media containing calcein which is a calcium-binding fluorescence dye. On titanium dishes, MSCs showed high viability to adhere to the surfaces and excellent proliferation. At day 14 of culture, MSCs differentiated into osteoblasts to form mineralized matrices on titanium dishes as well as tissue culture polystyrene (TCPS) dishes which are widely recognized as optimal culture substrates. Calcein was incorporated into the bone minerals fabricated by MSCs cultured on both substrates to show green emission under fluorescence microscopy. The fluorescence intensity was quantified with an image analyser during culture periods. These results indicate that the surfaces of titanium showed a high adhesion/proliferation potential to MSCs and that the titanium effectively supported the osteogenic differentiation of MSCs comparable to TCPS dishes. Therefore, the titanium is an effective scaffold that is applicable in bone reconstruction surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号