首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
To test the hypothesis that phosphatidic acid (PhA) is involved in the carbachol inhibition of hormone stimulated accumulation of cAMP we observed the effects of PhA on PGE1-stimulation of cAMP in WI-38 fibroblasts. PhA inhibited PGE1-stimulated cAMP accumulation of WI-38 fibroblasts; maximum inhibition (approximately 50-80%) occurred at a PhA concentration of 1.0 microM and significant inhibition was observed with a concentration of 0.1 microM. The full effects of PhA were evident within 15 sec after the co-addition of PGE1 and PhA. Addition of PhA to cells which had been pre-stimulated with PGE1 resulted in the rapid decay of cAMP levels to a new steady state level with a t 1/2 of approximately 65 sec. The inhibition produced by PhA did not appear to be simply attributable to a depolarization or increased intracellular Ca2+, since addition of either KCl or the Ca2+ ionophore A23187 did not lower PGE1-stimulated cAMP accumulation. When intact cells were pretreated with PhA then lysed and adenylate cyclase immediately assayed, no detectable changes in broken cell adenylate cyclase activities were observed. Also, PhA added directly to adenylate cyclase assays at concentrations as high as 100 microM produced no detectable inhibition of the membrane fraction adenylate cyclase activities. Nonetheless, our results suggest that adenylate cyclase activity in intact cells may be directly affected by physiological levels of PhA . Further, the similarities of carbachol [Butcher, R. W., Journal of Cyclic Nucleotide Research, 4:411 (1978)] and PhA inhibition support the hypothesis that carbachol (acetylcholine) exerts its effect on adenylate cyclase through alterations of the plasma membrane phospholipid composition.  相似文献   

2.
The effects of prostaglandin E2 (PGE2) on the proliferation and differentiation of osteoblastic cells were studied in osteoblast-like cells isolated from adult rat calvaria. Treatment of the cells with PGE2 within the concentration range 10(-8)-10(-5) M resulted in a dose-dependent increase in alkaline phosphatase (ALP) activity, [3H]proline incorporation into collagenase-digestible protein, and mineralized bone nodule (BN) formation, as well as a dose-dependent decrease in [3H]thymidine incorporation into the cells. PGE2 also caused a dose-dependent increase in the intracellular cyclic adenosine monophosphate (cAMP) content, with a maximal effective concentration of 10(-5) M; this effect of PGE2 was mimicked by forskolin, an adenylate cyclase activator. The treatment of adult calvarial cells with forskolin decreased BN formation, ALP activity, and collagen synthesis. These results suggested that cAMP does not have a stimulatory, but rather a suppressive, effect on the differentiation of adult rat calvarial cells. A time-course study of cAMP accumulation showed that both PGE2- and forskolin-induced cAMP reached a maximum at 5 min after the treatment, but the former rapidly returned to the basal level by 40 min, while the latter declined slowly and was still at 70% of the maximal level at 60 min, suggesting that PGE2 activates phosphodiesterase as well as adenylate cyclase. The presence of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, reduced the rate of degradation of cAMP formed after PGE2 treatment, suggesting the involvement of calmodulin in the activation of phosphodiesterase. However, PGE2 also caused the production of inositol 1,4,5-triphosphate (IP3) and an elevation of the intracellular Ca2+ concentration ([Ca2+]i), both of which peaked at 15 s and returned to the basal level within 1 min. Submaximal responses of the IP3 production and the [Ca2+]i elevation to PGE2 were obtained at 10(-5) M. W-7 decreased both basal and PGE2-induced ALP activity, collagen synthesis and BN formation, indicating the involvement of Ca2+/calmodulin-dependent protein kinase in the PGE2-induced differentiation of calvarial cells. From these results, we concluded that PGE2 inhibits the proliferation and stimulates the differentiation of calvarial osteoblasts by elevating the [Ca2+]i through the activation of a phosphoinositide turnover, but not via an activation of adenylate cyclase. We also found that BN formation varies, depending on the time of PGE2 addition, suggesting that responsiveness of the cells to PGE2 may change during the culture period.  相似文献   

3.
Two prostaglandins, prostaglandin E1 (PGE1) and prostaglandin B1 (PGB1), block S-phase DNA synthesis in synchronous cultured baby hamster kidney (BHK) cells. The prostaglandin inhibition of DNA synthesis does not appear to require elevated levels of cAMP. In BHK-21 cells that have been "desensitized" to prostaglandin stimulation of adenylate cyclase and, therefore, have control levels of cAMP, PGE1 retains its inhibitory effect on the incorporation of tritiated thymidine into DNA. When BHK cells are exposed to PGB1 (a prostaglandin that does not elicit a cAMP response), DNA synthesis is also blocked. In nonsynchronous cells exposed for 1 h to PGE and then incubated for 1 h with PGE removed, a rebound of DNA synthesis occurs, therefore providing evidence that a transient rise of cAMP in itself is not capable of causing a cascade of reactions that block the synthesis of DNA. In addition, the concentration of PGE required for inhibition of DNA synthesis is significantly less than that required for cAMP generation. Addition of 1 x 10(-8) M PGE to BHK cells can be shown to significantly inhibit DNA synthesis within 30 min, with half-maximal inhibition seen at 3 x 10(-7) M PGE. Cyclic AMP levels for controls were 4.9 +/- 0.2 and 4.6 +/- 0.1 for 1 x 10(-6) M PGE1. These findings suggest that the prostaglandins can act independently of cAMP at physiological concentrations; and, therefore, it is possible that prostaglandins have a physiological role in the control of cell growth during S-phase.  相似文献   

4.
The ability of isoproterenol, glucagon, PGE1 and cholera toxin to stimulate the synthesis of cAMP and protein kinase activity in line of liver cells (BRL) and a line of rat hepatoma cells (H35) has been determined. The concentration of cAMP in BRL cells (approximately 10 pmoles/mg protein) is in the range reported for other cultured cell lines but H35 cells contain extraordinarily low amounts of this cyclic nucleotide (approximately 0.05 pmoles/mg protein). Isoproterenol and PGE1 caused an increase in cAMP content, and protein kinase activation in BRL cells, although glucagon was ineffective. H35 cells, in contrast, were completely insensitive to all hormonal agonists. Despite this fact, cholera toxin was able to produce a marked increase in cAMP content, adenylate cyclase activity and protein kinase activation in H35 cells. binding studies with [125 I]-iodohydroxybenzylpindolol, a specific beta-adrenergic receptor antagonist, revealed that each H35 cell possesses fewer than 10 beta-adrenergic receptors whereas BRL cells contain 2-5,000 receptors per cell. The low level of cAMP in H35 cells appears to result from a combination of totally unstimulated adenylate cyclase and apparently elevated phosphodiesterase activities.  相似文献   

5.
A widely accepted notion is that an increasing cellular cyclic AMP (cAMP) concentration is prerequisite for increasing tyrosinase activity and melanin synthesis and for regulating proliferation of pigment cells. alpha-Melanocyte stimulating hormone (alpha-MSH) increases cAMP and tyrosinase activity in Cloudman melanoma cells. Prostaglandins (PGs) E1 and E2 increase melanoma cell tyrosinase activity and inhibit proliferation. Both PGs, but not alpha-MSH, block the progression of Cloudman melanoma cells from G2 phase of the cell cycle into M or G1. Only PGE1 and not PGE2 causes an elevation of cellular cAMP concentrations. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at 5 x 10(-4) M effectively blocks the increased cAMP synthesis by cells treated with 10 micrograms/ml PGE1. The addition of DDA, however, enhances the melanogenic response of melanoma cells to 10 micrograms/ml PGE1 or PGE2, 10(-7) M alpha-MSH, 10(-4) M isobutylmethylxanthine, 10(-4) M dibutyryl cyclic AMP. DDA also augments the effects of PGE1 or PGE2 on the melanoma cell cycle. Moreover, when DDA is added concomitantly with alpha-MSH, more cells are recruited into G2 than observed in untreated controls. Neither alpha-MSH nor DDA alone has any effect on the cell cycle. These findings undermine the role of cAMP in the melanogenic process and suggest that blocking melanoma cells in G2 may be required for the remarkable stimulation of tyrosinase activity observed with PGE1 or PGE2 alone or in combination with DDA. The observed block in G2 may be essential for the synthesis of sufficient mRNA, which is required for stimulation of tyrosinase activity.  相似文献   

6.
Interleukin 2 (IL 2) stimulated DNA synthesis of murine T lymphocytes (CT6) in a concentration-dependent manner, over a range of 1-1000 units/ml. This proliferative effect of IL 2 was attenuated by simultaneous exposure to prostaglandin E2 (PGE)2. In intact cells, IL 2 inhibited both basal and PGE2-stimulated cAMP production; the amount of cAMP generated was dependent upon the relative concentrations of IL 2 and PGE2. The effect of IL 2 on CT6 cell proliferation and cAMP production was mimicked by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), which, like IL 2, causes a translocation and activation of protein kinase C. While PGE2 stimulated adenylate cyclase activity in membrane preparations, neither IL 2 nor TPA inhibited either basal or stimulated membrane adenylate cyclase activity. However, when CT6 cells were pretreated with IL 2 or TPA and membranes incubated with calcium and ATP, both basal and PGE2-and NaF-stimulated membrane adenylate cyclase activity was inhibited. This inhibition of adenylate cyclase activity was also observed if membranes from untreated cells were incubated with protein kinase C purified from CT6 lymphocytes in the presence of calcium and ATP. The data suggest that the decreased cAMP production which accompanies CT6 cell proliferation results from an inhibition of adenylate cyclase activity mediated by protein kinase C and that these two distinct protein phosphorylating systems interact to modulate the physiological response to IL 2.  相似文献   

7.
IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.  相似文献   

8.
Using the ligands [125I]iodohydroxybenzylpindolol and [3H]prostaglandin E1 ([3H]PGE1), we have studied the relationship of receptors for beta-adrenergic agents and for PGE1 to adenylate cyclase in membranes of parental, hybrid, and variant mammalian cell lines. Fusion of parental clones responsive to beta-adrenergic agonists (beta+) with unresponsive clones (beta-) produced hybrid clones with a greatly diminished beta-adrenergic response; beta+ X beta leads to beta-. Binding studies with [125I]iodohydroxybenzylpindolol showed a decreased concentration of beta receptors in six such hybrid clones. Thus, paucity of beta-adrenergic receptors is probably a sufficient, albeit not necessarily complete, explanation for the decreased beta-adrenergic responsiveness of the hybrid clones. When a clone with beta receptor but without apparent adenylate cyclase activity (HC-1) was hybridized with a beta- clone that has adenylate cyclase (B82), a responsive hybrid clone was obtained. In nine cell hybrids produced by the fusion of clones responsive (PGE1+) and unresponsive (PGE1-) to PGE1, high affinity binding sites for [3H]PGE1 were expressed in the same manner as was PGE1-sensitive adenylate cyclase: PGE1+ X PGE1 leads to PGE1+. The chemical specificities and affinities of the parental receptors and responsive adenylate cyclases were faithfully reproduced in the hybrid clones. Activation by PGE1 was proportional to the occupation of the high affinity receptors. In a wild type lymphoma clone (24.3.2), the concentration dependences for binding of [3H]PGE1 and for activation of adenyalte cyclase by PGE1 were identical. In a variant lymphoma clone (94.15.1) lacking adenylate cyclase activity, no high affinity receptors for PGE1 were detected, whereas beta-adrenergic receptors have been demonstrated in this variant clone (Insel, P.A., Maguire, M.E., Gilman, A.G., Coffino, P., Bourne, H., and Melmon, K. (1976) Mol. Pharmacol. 12, 1062-1069). Hybrid cells formed by the fusion of 94.15.1 with cell line RAG (PGE1-) responded to PGE1. Clone 94.15.1 may have receptors for PGE1 of reduced affinity or in low concentration. Alternatively, RAG and 94.15.1 may have complementary genetic defects such that the RAG X 94.15.1 hybrid cells express a hormonally responsive receptor-adenylate cyclase system.  相似文献   

9.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

10.
The affinity of the chemoattractant receptor for N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) on human polymorphonuclear leukocytes (PMNs) is regulated by guanine nucleotides, and chemoattractants stimulate increased intracellular cAMP levels in PMNs. Our data, however, indicate that this receptor does not activate membrane-bound adenylate cyclase via direct nucleotide regulatory protein (N) coupling but instead raises cAMP levels indirectly via a mechanism which appears to require Ca2+ mobilization. This conclusion is based on the following data: 1) prostaglandin E1 (PGE1) activated and alpha 2-adrenergic treatment inhibited adenylate cyclase activation in PMN plasma membranes; fMet-Leu-Phe, however, neither activated nor inhibited adenylate cyclase in these membranes; 2) depletion of extracellular Ca2+ had no effect on isoproterenol and PGE1 elicited cAMP responses in intact PMNs while peak fMet-Leu-Phe and A23187-induced responses were reduced by approximately 50 and 80%, respectively; 3) 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate, a purported Ca2+ antagonist, caused almost complete inhibition of fMet-Leu-Phe and ionophore-induced cAMP responses in intact cells but had no effect on PGE1 and isoproterenol; 4) alpha 2-adrenergic agonists inhibited PGE1 but not chemoattractant- or A23187-elicited cAMP responses in intact PMNs; and 5) pretreatment of cells with a phosphodiesterase inhibitor (isobutylmethylxanthine) greatly potentiated the PGE1 and isoproterenol cAMP responses but nearly abolished the peak fMet-Leu-Phe response. Thus, chemoattractants appear to utilize a novel mechanism to raise cAMP levels which appear to require Ca2+ mobilization and could be mediated in part through a transient inhibition of phosphodiesterases. We suggest that stimulation of PMN functions by chemoattractants may utilize an N-coupled process to generate a Ca2+ signal which could in turn raise intracellular cAMP levels indirectly and thereby provide negative regulation.  相似文献   

11.
In an in vitro muscle bath, the active tension generated by strips of canine tracheal smooth muscle responding to cumulative additions of either histamine (10(-8) to 10(-3) M) or acetylcholine (10(-9) to 10(-3) M) was measured in the absence and presence of prostaglandin E2 (PGE2) (10(-6) to 10(-5) M). When contractile responses of equal magnitude were compared, the contractions elicited by acetylcholine were resistant to the inhibitory effects of PGE2, relative to comparable contractions elicited by histamine. To assess the role of adenylate cyclase in determining the different responses to histamine and acetylcholine in the presence of PGE2, we assayed adenylate cyclase activity in membranes prepared from canine tracheal smooth muscle and found that acetylcholine, but not histamine, decreased PGE2-stimulated adenylate cyclase activity by 48 +/- 2% (mean +/- SE; n = 5). However, in other experiments, we found that even large pharmacological increases in tissue adenosine 3',5'-cyclic monophosphate (cAMP) content only partially inhibited muscarinic tone. Also, exogenously applied analogues of cyclic AMP inhibited contractions induced by histamine more effectively than comparable contractions induced by acetylcholine. We concluded that acetylcholine decreased adenylate cyclase activity in membranes prepared from canine tracheal smooth muscle and that this effect may have contributed to, but did not completely account for, the relative resistance of muscarinic contractions to the inhibitory effects of PGE2.  相似文献   

12.
We have been investigating the hypothesis that prostaglandins including prostaglandin E2 (PGE2) produced during the critical condensation phase of limb chondrogenesis are involved in the regulation of cartilage differentiation by acting as local modulators of cyclic AMP (cAMP) accumulation. The purpose of the present study was to determine directly whether PGE2 and other prostanoids which had previously been shown to stimulate in vitro chondrogenic differentiation do indeed elevate the cAMP content of limb mesenchymal cells, and to determine whether the ability of various prostanoids to increase cAMP production by these cells directly reflects the potencies of these same molecules in stimulating chondrogenesis. We have found that PGE2 does indeed elicit a striking elevation in the cAMP content of subridge mesenchymal cells, indicating that the cells possess adenylate cyclase-coupled receptors for this molecule. The effect of PGE2 on cAMP accumulation is potentiated by a phosphodiesterase inhibitor, thus paralleling the potentiating effect phosphodiesterase inhibitors have on PGE2-stimulated in vitro chondrogenesis. The effect of PGE2 on cAMP content is dose-dependent with a 3-fold increase seen at 10(-8)M, which is the lowest concentration at which PGE2 effectively stimulates chondrogenesis. PGE1, which is just as effective as PGE2 in stimulating chondrogenesis, is just as effective as PGE2 in stimulating cAMP accumulation. PGA1, which is a much less effective stimulator of chondrogenesis than PGE2 or PGE1, is less than half as potent as these molecules in elevating cAMP levels. PGF1 alpha, 6-keto PGF1 alpha, and thromboxane B2, which have little or no effect on chondrogenesis, have little or no effect on cAMP content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We have reported previously that murine mammary tumor cell subpopulations isolated from one spontaneous adenocarcinoma are heterogenous in terms of prostaglandin E2 (PGE2) synthetic capacity. We have also shown that tumor-PGE2 contributes to the ability of these cells to grow and metastasize in vivo (Fulton and Heppner: Cancer Research 45:4779-4784, 1985). In the present study, we have asked whether exogenous PGE2 has direct effects on the proliferation of these cells in vitro and if such responses can be attributed to the capacity of these cells to 1) bind PGE2 and 2) activate adenylate cyclase via the PGE2 receptor. We report that PGE2, at concentrations below 1 x 10(-5) M, does not affect the proliferation rate of these cells. This unresponsiveness is not due to the absence of receptors for PGE2. However, marked heterogeneity in receptor binding and function was detected in these closely related cell lines. Two metastatic lines (66 and 410.4) have high-affinity receptors for PGE2 (average Kd = 4.3 x 10(-9) M/L and 4.2 x 10(-9) M/L, respectively) and similar binding capacities (4.1 x 10(-4) and 2.9 x 10(4) binding sites, respectively). Two nonmetastatic lines, 410 and 67, have receptors with lower affinity (Kd = 8.3 x 10(-9) M/L and 1.6 x 10(-7) M/L, respectively) and binding capacities of 2.8 x 10(5)/410 cell or 7.3 x 10(4)/67 cell. A third nonmetastatic line (168) exhibits no specific binding. PGE2 receptor stimulation leads to elevated intracellular cAMP in lines 66, 410, and 67. Line 410.4 cells appear to have a functional lesion in the PGE2 receptor resulting in a failure to elevate cAMP in response to receptor occupancy. Adenylate cyclase can, however, be activated in these cells by cholera toxin, NaF, or forskolin. In comparison to the other cell lines, line 168 cells respond poorly to all cAMP-stimulating agents. Thus, we have found that PGE2 binding is a heterogenous property for these cells, and, in addition, we have identified an apparent uncoupling of PGE2 receptor to the adenylate cyclase system in one cell line.  相似文献   

14.
D L Garver  C Johnson  D R Kanter 《Life sciences》1982,31(18):1987-1992
Reduced cyclic AMP (cAMP) production has been found in platelets of schizophrenic patients. cAMP is generated physiologically as a result of a series of steps beginning with receptor activation by a ligand, progressing through activation of the enzyme protein, adenylate cyclase. The deficit of cAMP found in the schizophrenic population may occur at any one, or at multiple steps in this cascade. The present study attempts to discriminate whether impaired adenylate cyclase itself was responsible for the cAMP deficit or whether abnormalities in receptor events or linkage are present in schizophrenics. The production of cAMP following direct stimulation of adenylate cyclase by NaF was contrasted with receptor mediated activation of adenylate cyclase by prostaglandin E1 (PGE1) in disrupted platelet preparations from schizophrenics and normal controls. cAMP formation stimulated by NaF was not different in platelets of schizophrenics as compared to controls, however, platelets of schizophrenics showed reduced response to PGE1 stimulation. The authors interpret these findings as evidence for a membrane associated abnormality of either receptor or receptor-adenylate cyclase linkage in the schizophrenias.  相似文献   

15.
We have examined the regulation of two key enzymes that control polyamine biosynthesis-L-ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) - by agents increasing cAMP in S49 lymphoma cells. Incubation of wild type S49 cells with beta-adrenergic agonists (terbutaline or isoproterenol) inhibited ODC and SAMDC activities rapidly (less than 2 hr). more quickly than these agents arrested the cells in the G1 phase of the cell cycle. The beta-adrenergic antagonist propranolol blocked inhibition of ODC activity produced by isoproterenol, but only if added simultaneously or less than 4 hr after the agonist. Incubation of wild type S49 cells with cholera toxin or PGE1 also inhibited ODC activity. Decreases in ODC activity produced by beta-adrenergic agonists, cholera toxin, PGE1 or dibutyryl cAMP were all enhanced by the phosphodiesterase inhibitor Ro 20-1724. Results of studies of ODC and SAMDC activity in S49 variants having lesions in the pathway of cAMP generation and action were as follows: kin- cells (which lack cAMP-dependent protein kinase activity) showed no inhibition of ODC by any agent; AC- cells (which have absent nucleotide coupling units in their adenylate cyclase system) only demonstrated inhibition in response to dibutyryl cAMP; UNC cells (which have deficient coupling of hormone receptors and adenylate cyclase) only demonstrated inhibition in response to dibutyryl cAMP and cholera toxin, and beta-depleted cells (which have a decreased number of beta-adrenergic receptors) responded as did wild type cells except for absent response to isoproterenol. We conclude that inhibition of ODC and SAMDC activity in S49 cells is an early response to agents that increase cAMP and that this action occurs via the "classical" pathways of activation of adenylate cyclase and protein kinase. These results in S49 cells contrast with evidence in other systems in which cAMP has been suggested to enhance polyamine biosynthesis, perhaps through alternative mechanisms.  相似文献   

16.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

17.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

18.
Detailed analysis of the action of prostaglandins (PGs) on the corpus luteum in primate species is very limited. In this study we examined the response of the adenylate cyclase system to PGs in homogenates prepared from the corpus luteum of rhesus monkeys at midluteal phase of the menstrual cycle. The conversion of [alpha 32p] ATP to [32p] cyclic AMP (cAMP) was assessed in the absence (control activity; 50 microM GTP) and presence of various concentrations of seven PGs and arachidonic acid, either alone or in combination with 250 nM hCG. Cyclic AMP production increased up to three-fold in the presence of PGD2, PGE2, PGI2 or PGF2 alpha; however PGA2, PGB2, 13, 14-dihydro-15-keto PGE2 and arachidonic acid alone did not alter cAMP levels. In dose-response studies, adenylate cyclase was 10 and 100-fold more sensitive to PGD2 (Vmax at 1 X 10(-5) M) than to PGE2 or to PGI2 and PGF2 alpha, respectively. Activity in the presence of hCG plus either PGD2, PGE2, PGI2 or PGF2 alpha did not differ from that for hCG (or the PG) alone. In contrast, addition of PGA2 or arachidonate inhibited (p less than 0.05) hCG-stimulated cAMP production by 50 and 100 percent. We conclude that the gonadotropin-sensitive adenylate cyclase of the macaque corpus luteum is also modulated by several PGs. These factors may either mimic (e.g., PGD2, PGE2, PGI2) or suppress (PGA2) gonadotropin-stimulated cAMP production and possibly cAMP-mediated events in luteal cells.  相似文献   

19.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

20.
Stimulation of muscarinic cholinergic receptors in SK-N-SH human neuroblastoma cells resulted in a 1.5-4 fold increase in intracellular cAMP levels. This unusual response was sensitive to atropine and pirenzepine but insensitive to pertussis toxin. It was observable regardless of whether basal, PGE1- or forskolin-stimulated cAMP levels were measured. The half-maximal concentration for carbachol-stimulation of cAMP levels (6 microM) was similar to that for the previously determined carbachol-induced stimulation of phosphoinositide turnover in these cells, suggesting that the former is mediated by the latter. These data indicate that cross-talk between the phosphoinositide turnover system and the adenylate cyclase system results in increased cAMP levels in SK-N-SH cells in response to muscarinic receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号