首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Land use and land cover change has a marked affect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic variables. To assess wetland condition, we have developed a Florida wetland condition index (FWCI) composed of indicators of community structure in the diatom, macrophyte, and macroinvertebrate assemblages for 216 wetlands (n = 74 depressional marsh, n = 118 depressional forested, n = 24 flowing water forested wetlands). Depressional wetlands located along a human disturbance gradient throughout Florida were sampled for each assemblage. Forested flowing water wetlands were sampled for macrophytes only. The landscape development intensity index (LDI) was used to quantify the human disturbance gradient. In general, human disturbance in adjacent areas had the greatest impact on depressional herbaceous wetlands, followed by depressional forested wetlands. Forested flowing water wetlands (i.e., forested strands and floodplain wetlands) were less affected by local conditions, with most of their changes in wetland condition correlated with alterations at the larger watershed scale. Strong correlations between the FWCIs and LDI index scores suggest that changes in community structure can be detected along a gradient of human land use activities adjacent to wetland ecosystems.  相似文献   

2.
The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal changes in hydrology and target indicator organism biology. To determine if benthic diatoms could be used as a multi-season biological indicator of wetland condition in isolated forested wetlands of Florida, USA, 11 wetlands were sampled twice during a 5-month period, once when dry, then again when hydrated. Sites sampled when dry had significantly higher diatom taxa richness at genus and species levels. Non-metric multidimensional scaling and multiple response permutation process analyses resulted in no obvious or significant wet/dry grouping of species or genus level abundance data. Five of seven diatom metrics of the Florida Wetland Condition Index (FWCI) for depressional forested wetlands were significantly linearly correlated (p < 0.05), while only one of seven metrics (a dissolved oxygen indicator) had a significantly different mean in paired t-test analyses. The final FWCI was significantly correlated (Pearson's = 0.85, p < 0.001) between wet and dry sites, and no difference was found in mean FWCI score between wet and dry sites (t = −1.98, p = 0.076), suggesting that with additional research, benthic diatoms may be used to monitor and assess wetland condition regardless of season or site hydrologic conditions.  相似文献   

3.
Vegetation indices are widely employed to evaluate wetland ecological condition, and are expected to provide sensitive and specific detection of environmental change. Most studies evaluate the performance of condition assessment metrics in the context of the data used to calibrate them. Here we examined the temporal stability of the Florida Wetland Condition Index (FWCI) for vegetation of depressional forested wetlands by resampling sites in 2008 that were previously sampled to develop the FWCI in 2001. Our objective was to determine if FWCI, a composite of six vegetation-based metrics, provides a robust measure of condition given inter-annual variation in environmental conditions (i.e., rainfall) between sampling periods. To that end, we sampled 22 geographically isolated wetlands in north Florida that spanned a wide land use/land cover intensity gradient. Our results suggested the FWCI is robust. We observed no significant paired difference in FWCI across or within land use categories, and the relationship between FWCI in 2001 and 2008 was strong (r2 = 0.88, p < 0.001). This was despite surprisingly high composition change. Mean Jaccard community similarity within sites between years was 0.30, suggesting that most of the herbaceous taxa were replaced, possibly because of different antecedent rainfall conditions or sampling during different phenological periods; both are contingencies to which condition indices must be robust. We did observe some evidence of convergence toward the mean in 2008, with the fitted slope relating 2001 and 2008 FWCI scores significantly below one (0.63, 95% CI = 0.53–0.73). The most variable FWCI component metric was the proportional representation of obligate wetland taxa, suggesting that systematic changes may have been induced by different hydrologic conditions prior to sampling; notably, however, FWCI computed without this component still exhibited a slope significantly less than 1 (0.72, 95% CI = 0.61–0.88). Moreover, there was evidence that species lost from reference sites (higher condition) were replaced by taxa of lower floristic quality, while species lost from agricultural sites (consistently the lowest condition land use category) were replaced by species of higher quality. A significant positive association between FWCI and the ratio of coefficients of conservatism (CC) of species lost to those gained suggests some overfitting in FWCI development. However, despite modest evidence of overfitting, FWCI provides temporally consistent estimates of wetland condition, even under conditions of substantial taxonomic turnover.  相似文献   

4.
The vegetation portion of the Florida Wetland Condition Index (FWCI), an index of biological integrity, provided consistent and repeatable measures of condition at eighteen wetlands sampled in two consecutive growing seasons. The sample wetlands reflected a gradient of adjacent land use from non-impacted reference areas to wetlands imbedded within silviculture, cattle pasture and residential areas. Wetlands were described as herbaceous depression (n = 6), forested depression (n = 5) and forested strand or floodplain wetlands (n = 7), and represented different states of succession. Even though the wetlands were unique from one another and occurred across a large geographic area in Florida, the FWCI results calculated for all the wetlands were representative of adjacent land use impacts and not sensitive to natural variation. During the duration of this study, changes in weather from drought to tropical storm conditions, as well as management activities such as fire and herbivory, impacted wetlands. These effects were apparent in the change of species composition between sampling periods; 23–56% of species were different when resampled. Even though composition changed, the proportion of indicators remained consistent. The resulting condition scores suggested a one-to-one relationship between sampling periods.  相似文献   

5.
Geographically isolated wetlands (GIWs) are common features of the Dougherty Plain physiographic region in southwestern Georgia. Due to lack of protection at the state and federal levels, these wetlands are threatened by intensive agricultural and silvicultural land uses common in the region. Recently, the ecological condition of such GIWs was assessed for the southeastern United States using the Landscape Development Intensity Index (LDI), a practical assessment tool that relies on remotely sensed land use and land cover (LULC) data surrounding isolated wetlands to rapidly predict wetland condition. However, no assessments have been attempted for GIWs in the Dougherty Plain specifically. Our goal was to develop a framework to guide and refine remote assessment of wetland condition within this agriculturally intense region of the southeastern USA. In this study, we characterized human disturbances associated with isolated wetlands in the Dougherty Plain, and paired the rapid assessment of GIWs using LDI with an intensive assessment of wetland plant communities. Specifically, we: (1) examined how macrophyte assemblages and vegetation metrics vary across a human disturbance gradient in the Dougherty Plain; (2) compared multiple condition assessment outcomes using variations of the LDI method that differed in spatial extent and resolution of LULC categories; and (3) determined the predicted condition of GIWs in the Dougherty Plain as indexed by LDI and compared with region-wide assessments of GIWs of the southeastern USA. Generally, the relationship between wetland plant communities and surrounding land use supported the assumptions of the LDI index in that wetlands surrounded by agricultural land use classes featured distinct plant communities relative to those surrounded by forested land use classes. Our results indicated that finer spatial resolution of LULC data improved the predictive ability of LDI. However, based on incongruence between wetland vegetation composition and LDI scores in some forested landscapes, this study identified limitations of the LDI assessment method, particularly when applied in regions in which prescribed fire is an important ecological driver of vegetation and habitat. Thus, we conclude that LDI may be biased toward an overestimation of reference condition GIWs, even though the habitat may be functionally degraded by the absence of natural processes such as fire. Regardless, relative to the assessment of the entire southeastern US, a greater proportion of total GIWs of the Dougherty Plain were identified as impaired due to the intensity of irrigated agricultural land use.  相似文献   

6.
In the United States, the regulatory approach to wetland protection has a traditional focus on size as a primary criterion, with large wetlands gaining significantly more protection. Small, isolated wetlands have received less protection; however, these wetlands play a significant role in the maintenance of biodiversity of many taxonomic groups, including amphibians. An important question for directing conservation and management efforts for amphibians is whether size is a useful criterion for regulatory decisions. Because hydroperiod has an important influence on amphibian composition in wetlands, I conducted a study to examine the relative influence of wetland size and hydroperiod on amphibian occurrence. I sampled 103 wetlands in southern New Hampshire in 1998 and 1999 using dipnet sampling to document the presence of larval amphibians. Wetlands were placed into one of three hydroperiod categories; short (<4 months), intermediate (4–11 months), or long (permanent) based on field observations of drying pattern. Wetland size was determined from digitized national wetland inventory (NWI) maps (most wetlands) or measured in the field. I examined patterns of amphibian species richness and individual species occurrence using generalized linear models. Wetland size ranged from 0.01 to 3.27 ha. Overall, species richness was significantly influenced by hydroperiod (χ2 = 18.6, p <0.001), but not size (χ2 = 1.4, p = 0.24). Examination within hydroperiod categories revealed several significant relationships with wetland size. Species richness was related to wetland size in wetlands with short and intermediate hydroperiods, but not wetlands with long hydroperiods. Wetland size does not appear to be a useful sole criterion for determining wetland functional value for amphibians; assessments of functions of seasonally inundated wetlands for amphibians would benefit from examination of hydroperiod.  相似文献   

7.
Lillie  Richard A.  Evrard  James O. 《Hydrobiologia》1994,279(1):235-246
Waterfowl and limnological data were monitored on Waterfowl Production Area (WPA) wetlands in northwestern Wisconsin over a 6-yr period (1983–88) to determine the impact of macroinvertebrates and macrophytes on waterfowl utilization. Interrelationships between limnological conditions and Waterfowl Breeding Pair Densities (BPDs reported as pairs/ha water surface) were analyzed using correlation and general linear model analysis techniques.Annual changes in waterfowl BPDs differed between wetlands according to differences in the structure of macrophyte communities and basin morphometry. The strength of associations differed between the two dominant waterfowl species. In a wetland dominated by dense stands of submersed vegetation, annual fluctuations in blue-winged teal (Anas discors) BPDs corresponded directly with changes in macrophyte biomass, but not with changes in macroinvertebrate density. In a nearby less densely vegetated wetland of similar water chemistry and trophic status, fluctuations in teal BPDs corresponded directly with changes in macroinvertebrate density, but not with changes in macrophyte biomass. These associations occurred despite a significant positive correlation between macroinvertebrates and macrophyte biomass in the latter habitat. Annual fluctuations in mallard (Anas platyrhynchos) BPDs were not correlated significantly with either macrophyte biomass or macroinvertebrate density in either wetland.  相似文献   

8.
湟水国家湿地公园湿地价值及其辐射格局研究   总被引:1,自引:0,他引:1  
评估湿地价值量并分析价值的空间分布情况,对湿地保护管理和区域规划利用具有重要的指导意义。以青海西宁湟水湿地公园为研究区,构建一套适合高原城市湿地的生态系统服务评价体系,采用功能价值法和断裂点模型法,分析公园的湿地价值及其辐射格局特征。结果表明:(1) 2020年湟水国家湿地公园的15项生态系统服务的总价值为6.18亿元,四大服务价值量按照价值高低排序依次为文化服务、调节服务、支持服务和供给服务;(2) 5个评价区中,湟水主河道的价值最高,其次为北川湿地和海湖湿地,最后是火烧沟公园和宁湖湿地;(3) 5大湿地区生态系统服务的辐射范围由大到小依次为:宁湖湿地>北川湿地>湟水主河道>海湖湿地>火烧沟公园;对湿地服务辐射范围叠加处理后,形成1个核心区和5个次核心区域;(4)湟水国家湿地公园的生态系统服务存在空间溢出情况,湟水主河道的生态系统服务向周边湿地公园溢出,其他四个湿地区之间生态系统服务存在相互溢出和叠加的现象。  相似文献   

9.
A number of biological approaches are commonly used to assess the ecological integrity of stream ecosystems. Recently, it is becoming increasingly common to use multiple organism groups in bioassessment. Advocates of the multiple organism approach argue that the use of different organism groups should strengthen inference-based models and ultimately result in lower assessment error, while opponents argue that organism groups often respond similarly to stress implying a high degree of redundancy. Using fish, macroinvertebrate, macrophyte and benthic diatom data, site-specific parameters (e.g., water chemistry and substratum) and catchment variables from European mountain (n = 77) and lowland (n = 85) streams we evaluated the discriminatory power and uncertainty associated with the use of a number of biological metrics commonly used in stream assessment. The primary environmental gradient for both streams types was land use and nutrient enrichment. Secondary and tertiary gradients were related to habitat quality or alterations in hydromorphology. Benthic diatom and macroinvertebrate metrics showed high discriminatory power (R2 values often >0.50) and low error (<30%) with the primary (nutrient) gradient, while both fish and macrophyte metrics performed relatively poorly. Conversely, both fish and macrophyte metrics showed higher response (high coefficients of determination) than either benthic diatom or macroinvertebrate metrics to the second (e.g., alteration in habitat/hydromorphology) gradient. However, the discriminatory power and error associated with individual metrics varied markedly, indicating that caution should be exercised when selecting the ‘best’ organism group or metric to monitor stress.  相似文献   

10.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

11.
贵州草海湿地生态系统服务价值评估   总被引:11,自引:0,他引:11  
徐婷  徐跃  江波  张玲  宋文彬  周德民 《生态学报》2015,35(13):4295-4303
贵州草海是中国三大高原淡水湖泊之一,其湿地生态系统能给人类提供产品和服务,为社会可持续发展提供基础,由于其价值没有被量化,人们对其重要性缺乏直观认识,导致了湿地的不合理开发及利用。根据草海湿地的特征,运用市场价值法、影子工程法、问卷调查法等定量评估了2010年草海湿地生态系统最终服务价值,包括供给服务、调节服务和文化服务。结果表明,草海湿地生态系统服务总价值为4.39×108元,其中供给服务价值为0.74×108元,调节服务价值为1.14×108元,文化服务价值为2.51×108元;所计算的10项服务按其价值大小排序为:休闲娱乐生物多样性与景观资源保护水资源供给调蓄洪水气候调节补给地下水大气组分调节原材料生产水质净化食物生产;单位面积服务价值为16.40×104元/hm2,是2010年贵州省威宁县单位面积GDP产值的16.91倍。从研究结果来看,草海湿地生态系统服务价值较大,为草海湿地的管理及保护提供了一定参考依据。  相似文献   

12.
Aquatic plants usually establish following wetland creation from a variety of mechanisms including animal transport, inflows from nearby wetlands, wind dispersal, and seed banks if they are available. However, at created wetlands that are isolated from natural wetlands, aquatic plant communities may not establish even after 10 or more years. One method of improving the establishment of aquatic plants is through the use of salvaged-marsh soils. Using this method, wetland soil from a donor site is collected and spread across the basin of the created wetland. When the proper hydrologic regime is reached at the created site, the seed bank from the donor soil is then present to take advantage of the uncolonized site. Over 1500 wetlands have been created in northeast Wyoming, USA from bentonite mining and most of them have not developed submersed and emergent plant communities due to isolation from plant sources. Our goal was to evaluate the effectiveness of using salvaged-wetland soil as a tool for improving plant growth at created wetlands. Our study took place at 12 newly created wetlands that were isolated from other wetlands by >5 km. Six wetlands were treated as reference wetlands, with no introductions of seeds or propagules. At the other six wetlands we spread ≈10–15 cm of salvaged soil from a donor wetland during the winter of 1999–2000. To identify the potential plants in donor soil, we collected 10 random samples from the donor wetlands and placed them within wetland microcosms in a greenhouse where they were treated to either moist-soil conditions (water at or just below the soil line) or submersed conditions (water levels maintained at 15–30 cm). Treatment wetlands were evaluated for plant growth during the fall of 2000 and 2001, whereas the greenhouse samples were grown for two growing seasons then harvested. Our results show that using salvaged wetland soil increases: (1) the number of plant species present at a wetland over time, (2) the total vegetation coverage in a treated wetland over time, and (3) the total plant biomass in a treated wetland. The species pool available in the salvaged wetland soil was limited to 10 obligate wetland species, but several of them are considered valuable to waterfowl and other wildlife. Furthermore, salvaged-wetland soil could be useful for ameliorating poor substrate conditions (i.e., bentonite) and improving conditions for the establishment of additional species. One concern with this technique is the introduction of invasive or exotic species that could form monocultures of undesirable plants (e.g., cattail [Typha spp.]); introducing more desirable species during the application of salvaged soil could reduce this probability. We believe incorporating salvaged-wetland soil during basin construction could be used to increase the value and productivity of created wetlands in this region.  相似文献   

13.
An index of biotic integrity (IBI) is a frequently used approach for assessing the ecological integrity of streams with fish and macroinvertebrates the faunal assemblages most commonly used as indicator taxa. The IBI approach has been much less commonly applied to wetlands, despite the legal, policy and scientific need to assess wetland condition and develop ecological performance goals for wetland creation, restoration and enhancement. While some IBIs are sophisticated systems with statewide application that have undergone one or more testing iterations, many published IBIs are derived from single data sets of a single class of aquatic resource with limited geographic application. The State of Ohio initiated development of a wetland IBI using vascular plants in 1996. Sampling methods were investigated and ultimately a plot-based method was adopted. Potential attributes and different human disturbance gradients were evaluated in several studies. Ultimately, IBIs for emergent, forest and shrub dominated wetlands were developed. Data from the Vegetation IBI-emergent (VIBI-E) is presented to illustrate this process. Subsequent testing and refinement is a critical step in the development of a robust IBI with more than local application. Throughout its initial development (R2 = 0.863, p < 0.001), first major testing iteration (R2 = 82.2%, p < 0.001), second test iteration (R2 = 75.0%, p < 0.001) and third test iteration (R2 = 82.1%, p < 0.001), the VIBI-E has remained significantly correlated with the disturbance gradient. Eight of the original 10 metrics proposed continued to have significant and interpretable relationships with the disturbance gradient, with 4 metrics remaining completely unchanged, and 4 undergoing relatively minor modifications, and 2 being replaced. The VIBI-E and its component metrics were also evaluated against a new disturbance gradient (Landscape Development Index or LDI), derived from land use percentages within a 1 km radius of the wetlands, that was not used during VIBI-E development. The VIBI-E score and 9 of 10 metrics were significantly correlated with the LDI disturbance gradient providing separate confirmation of the VIBI. The Vegetation IBI-E consistently and reliably assessed wetland condition across the whole range of wetland types throughout Ohio's ecological regions.  相似文献   

14.
Successional patterns, water quality changes, and effects of hydrologic pulsing are documented for a whole-ecosystem experiment involving two created wetlands that have been subjected to continuous inflow of pumped river water for more than 10 years. At the beginning of the growing season in the first year of the experiment (1994), 2400 individuals representing 13 macrophyte species were introduced to one of the wetland basins. The other basin was an unplanted control. Patterns of succession are illustrated by macrophyte community diversity and net aboveground primary productivity, soil development, water quality changes, and nutrient retention for the two basins. The planted wetland continued to be more diverse in plant cover 10 years after planting and the unplanted wetland appeared to be more productive but more susceptible to stress. Soil color and organic content continued to change after wetland creation and wetlands had robust features of hydric soils within a few years of flooding. Organic matter content in surface soils in the wetlands increased by approximately 1% per 3-year period. Plant diversity and species differences led to some differences in the basins in macrophyte productivity, carbon sequestration, water quality changes and nutrient retention. The wetlands continued to retain nitrate–nitrogen and soluble reactive phosphorus 10 years after their creation. There are some signs that sediment and total phosphorus retention are diminishing after 10 years of river flow. Preliminary results from the beginnings of a flood pulsing experiment in the two basins in 2003–2004 are described for water quality, nutrient retention, aboveground productivity, and methane and nitrous oxide gaseous fluxes.  相似文献   

15.
Wetlands in Uganda experience different forms of human pressure ranging from drainage for agriculture and industrial development to over harvesting of wetland products. In order to develop sustainable management tools for wetland ecosystems in Uganda and the Lake Victoria Region, water quality analyses were carried out in a rural undisturbed (pristine) wetland (Nabugabo wetland in Masaka) and two urban wetlands that are experiencing human and urban development pressure (the Nakivubo wetland in Kampala and Kirinya wetland in Jinja). The former wetland forms the main inflow into Lake Nabugabo while the other two border the northern shore of Lake Victoria, Uganda. Nabugabo wetland buffers Lake Nabugabo against surface runoff from the catchment, while Nakivubo and Kirinya wetlands provides a water treatment function for wastewater from Kampala City and Jinja town respectively, in addition to buffering Lake Victoria against surface runoff. Water quality was assessed in all the wetland sites, and in addition nutrient content and storage was investigated in the main plant species (papyrus, Phragmites, Miscanthidium and cocoyam) in Nakivubo and Kirinya wetlands. A pilot experiment was also carried out to assess the wastewater treatment potential of both the papyrus vegetation and an important agricultural crop Colocasia esculenta (cocoyam). Low electrical conductivity, ammonium–nitrogen and ortho-phosphate concentrations were recorded at the inflow into Nabugabo wetland (41.5 μS/cm; 0.91 mg/l and 0.42 mg/l respectively) compared to the Nakivubo and Kirinya wetlands (335 μS/cm; 31.68 mg/l and 2.83 mg/l and 502 μS/cm; 10 mg/l and 1.87 mg/l respectively). The papyrus vegetation had higher biomass in Nakivubo and Kirinya wetlands (6.7 kg DW m−2; 7.2 kg DW m−2 respectively), followed by Phragmites (6.5, 6.7), cocoyams (6.4, 6.6) and Miscanthidium (4.0, 4.2). The papyrus vegetation also exhibited a higher wastewater treatment potential than the agricultural crop (cocoyam) during the pilot experiment (maximum removal degree of ammonium–nitrogen being 95% and 67% for papyrus and yams). It was concluded that urbanisation pressure reduces natural wetland functioning either through the discharge of wastewater effluent or the degradation of natural wetland vegetation. It is recommended that wetland vegetation be restored to enhance wetland ecosystem functioning and for wetlands that are not yet under agricultural pressure, efforts should be made to halt any future encroachment.  相似文献   

16.
A statewide condition assessment of North Dakota wetlands in the summer of 2011 was conducted as part of the U.S. Environmental Protection Agency's National Wetland Condition Assessment (NWCA). Two other wetland condition assessments, the Index of Plant Community Integrity (IPCI) and North Dakota Rapid Assessment Method (NDRAM), were also completed at each wetland. Previous studies have identified how the distinct signatures of stable isotopes can be used to determine different land uses, anthropogenic impacts, nutrient cycling, and biological processes. To evaluate if these relationships existed in northern prairie wetlands, the data collected from the wetland assessments were compared with the natural abundance of soil nitrogen (δ15N) isotopes. Wetland soil δ15N was significantly higher (isotopically heavier) in wetlands surrounded by cropland compared to those surrounded by idle or grazed/hayed grasslands, possibly reflecting anthropogenic impacts and multiple nitrogen sources. Soil δ15N was significantly correlated with floristic quality, IPCI scores, NDRAM scores, and average buffer width, indicating that soil δ15N values may be representative of wetland condition. Soil δ15N exhibited significant differences among wetland types, although limited sample sizes of certain wetland types may have affected this result. Additional studies on the natural abundance of wetland soil isotopes need to be performed in northern prairie wetlands. This study is the first step in exploring the potential applications of wetland soil nitrogen isotopes regarding wetland assessment and surrounding land use and provides important insight for future studies.  相似文献   

17.
Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low (<200 μeq l−1) acid-neutralizing capacity (ANC) in southeastern Maine. We documented bird, pair, and brood use during 1982–1984 and in 1982 we sampled 10 wetlands with a sweep net to collect invertebrates. We related mean numbers of invertebrates per wetland to water chemistry, basin characteristics, and avian use of different wetland types. Shallow, beaver (Castor canadensis)-created wetlands with the highest phosphorus levels and abundant and varied macrophyte assemblages supported greater densities of macroinvertebrates and numbers of duck broods (88.3% of all broods) in contrast to deep, glacial type wetlands with sparse vegetation and lower invertebrate densities that supported fewer broods (11.7%). Low pH may have affected some acid-intolerant invertebrate taxa (i.e., Ephemeroptera), but high mean numbers of Insecta per wetland were recorded from wetlands with a pH of 5.51. Other Classes and Orders of invertebrates were more abundant on wetlands with pH > 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ≤ 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.  相似文献   

18.
We conducted a field study to examine the influence of hydroperiod and concomitant changes in abiotic (wetland size, pH, conductivity, dissolved oxygen and water temperature) and biotic (predatory fish presence) characteristics on macroinvertebrate communities in isolated wetlands in southern New Hampshire. Invertebrates were sampled using dipnet sweeps in 42 wetlands with short (<4 months), intermediate (4–11 months) or long (permanent) hydroperiods in 1998 and 1999. We found that invertebrate genera richness, and to a lesser degree abundance, increased linearly along the hydrological gradient, and in response to temperature and dissolved oxygen. Relative abundance of genera also differed markedly with respect to hydroperiod. Most notably, invertebrate communities changed from Acilius-dominated communities to Notonecta-dominated communities. Invertebrate relative abundances in permanent wetlands also differed with respect to the occurrence of predatory fish. Some genera (e.g., Libellula, and Dytiscus) were more likely to occur in permanent wetlands without fish, whereas other genera (e.g., Buena, and Basiaeshna) were more likely to occur in wetlands with predatory fish. Because aquatic invertebrate communities differed markedly with respect to wetland hydroperiod, and in relation to the occurrence of predatory fish, it is essential to retain a diversity of wetlands in the landscape to ensure the long-term persistence of aquatic invertebrate biodiversity.  相似文献   

19.
This contribution summarizes the nutrient and metal removal of a free water surface constructed wetland, compares it with the previous small-scale prototype and discusses the observed differences. Several locally available macrophyte species were transplanted into the wetland. Eichhornia crassipes (water hyacinth) showed a fast growth and it soon became dominant, attaining 80% cover of the wetland surface. Typha domingensis (cattail) and Panicum elephantipes (elephant panicgrass) developed as accompanying species attaining 14 and 4% cover. The wetland removed 86% of Cr and 67% of Ni. Zn concentrations were below 50 μg l−1 in most samplings. The FeS precipitation probably caused the high retention of Fe (95%). The outcoming water was anoxic in most samplings. Phosphate and ammonium were not retained within the wetland while 70% and 60% of the incoming nitrate and nitrite were removed. Large denitrification losses are suggested. Cr, Ni and Zn were retained by the macrophytes in the larger wetland and in sediment in the small-scale one. Differences in the retention mechanism of the two wetlands are discussed.  相似文献   

20.
Transformation of urea to ammonium is an important link in the nitrogen cycle in soil and water. Although microbial nitrogen transformations, such as nitrification and denitrification, are well studied in freshwater sediment and epiphytic biofilm in shallow waters, information about urea transformation in these environments is scarce. In this study, urea transformation of sedimentary, planktonic, and epiphytic microbial communities was quantified and urea transformation of epiphytic biofilms associated with three different common wetland macrophyte species is compared. The microbial communities were collected from a constructed wetland in October 2002 and urea transformation was quantified in the laboratory at in situ temperature (12°C) with the use of the 14C-urea tracer method, which measures the release of 14CO2 as a direct result of urease activity. It was found that the urea transformation was 100 times higher in sediment (12–22 mmol urea-N m−2 day−1) compared with the epiphytic activity on the surfaces of the submerged plant Elodea canadensis (0.1–0.2 mmol urea-N m−2 day−1). The epiphytic activity of leaves of Typha latifolia was lower (0.001–0.03 mmol urea-N m−2 day−1), while urea transformation was negligible in the water column and on the submerged leaves of the emergent plant Phragmites australis. However, because this wetland was dominated by dense beds of the submerged macrophyte E. canadensis, this plant provided a large surface area for epiphytic microbial activity—in the range of 23–33 m2 of plant surfaces per square meter of wetland. Thus, in the wetland system scale at the existing plant distribution and density, the submerged plant community had the potential to transform 2–7 mmol urea-N m−2 day−1 and was in the same magnitude as the urea transformation in the sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号