首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The effect of intracellular iontophoretic injection of cyclic AMP on electrical activity of neurons RPa1, RPa3, LPa2, LPa3, and LPl1 in the corresponding ganglia ofHelix pomatia was investigated. Injection of cyclic AMP into neuron LPl1 was found to cause the appearance of rhythmic activity (if the neuron was originally "silent"), an increase in the frequency of spike generation (if the neuron had rhythmic activity), and a decrease in amplitude of waves of membrane potential, in the duration of the interval between bursts, and in the number of action potentials in the burst (if the neuron demonstrated bursting activity). In the remaining "silent" neurons injection of cyclic AMP led to membrane depolarization. Injection of cyclic AMP into neurons whose membrane potential was clamped at the resting potential level evoked the development of an inward transmembrane current (cyclic AMP current), the rate of rise and duration of which increased proportionally to the size and duration of the injection. Theophylline in a concentration of 1 mM led to an increase in the amplitude and duration of the cyclic AMP current by about 50%. It is concluded that a change in the cyclic AMP concentration within the nerve cell may modify the ionic permeability of its membrane and, correspondingly, its electrical activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 517–525, September–October, 1980.  相似文献   

2.
Dyatlov  V. A. 《Neurophysiology》1988,20(5):489-492
The role of calcium ions in modulating serotonin action on acetylcholine (ACh) response in nonidentified and identified (LPa3 and RPa3) neurons ofHelix pomatia was investigated using voltage-clamping at the neuronal membrane. Exposure for 1 min to serotonin prior to ACh application reduced response to ACh in neuron LPa3 and raised it in RPa3. The same two patterns of modulating ACh-induced response were produced by extracellular application of theophylline and dibutyryl c-AMP. Injecting calcium ions into neuron LPa3 led to reinforcement of ACh-induced current in the presence of serotonin, thus changing the pattern of serotonin-induced modulation of ACh response in this unit. In neuron RPa3, the same process enhanced the serotonin-induced modulating effect on ACh response but without changing the pattern of modulation, while injected EDTA produced the reverse effects. Increased intracellular concentration of calcium ions brought about a reduction in the degree of serotonin-induced modulation of ACh response in neuron RPa3. Possible reasons are discussed for changes in serotonin-induced bimodal modulation of ACh response in test neurons produced by altering the extracellular concentration of calcium ions.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 666–671, September–October, 1988.  相似文献   

3.
A negative shift of reversal potential at its extinction has been found with the current-voltage relation of acetylcholine-induced inward current in Helix lucorum's RPa3 and LPa3 neurons. An assumption has been made on a nonuniform extinction of acetylcholine-induced currents which is due to the motion of different ions. Ion flow with a more positive equilibrium potential decreases to a greater degree than reversal potential. It can be a current of Ca2+ and/or Na+ ions.  相似文献   

4.
Experiments were conducted on brain isolated from the frogRana ridibunda using a current chop technique of transmembrane polarization and discrete measurement of membrane potential by a single microelectrode during intervals between waves of current. It was found that the current-voltage relationship of the motorneuron is non-linear; i.e., membrane resistance decreases considerably in step with increased depolarizing current. After the initial reduction, membrane resistance began to climb back when a more protracted current lasting 1–2 min was applied; consequently membrane potential level shifted towards more positive values of +50 mV and above at current levels of 40–60 nA. It then became possible to bring about complete reversal of monosynaptic EPSP produced in the lumbar motoneurons by stimulation of the brainstem reticular formation or by microelectrode stimulation of the ventrolateral tract descending fibers and to measure reversal potential of these EPSP directly, without resorting to computing or extrapolation. Measurements varied mainly between 0 and –10 mV.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 534–542, July–August, 1986.  相似文献   

5.
Kononenko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):483-488
The ionic mechanisms of hyperpolarization produced by applying oxytocin (OT) were investigated at the membrane of identifiedHelix pomatia neurons. Two types of neuron were known to exist, in one of which hyperpolarization is produced by a reduction in chloride ions at the membrane and a rise in membrane permeability to potassium ions in the other. In the first of these, response to OT had a reversal potential of –40 mV and decreased when furosemide and tolbutamide were added to the external medium. In the second case, the potential of the reversal of the response to OT was –70 mV. Upon doubling of potassium ion concentration in the external solution it was shifted towards depolarization by 15 mV. It is sugested thatHelix pomatia neurons have different types of OT receptors, some of which, when activated, manifest reduced chloride permeability at the membrane (probably through the cell cyclase system) with a rise in potassium permeability at the membrane in others.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 659–666, September–October, 1988.  相似文献   

6.
The effect of intracellular injection of cyclic AMP (cAMP) and extracellular application of theophylline on the inward calcium current was investigated in neurons RPa3 and LPa3 ofHelix pomatia. Iontophoretic injection of cyclic AMP (current 10–35 nA, duration about 1 min) led to a decrease in amplitude of the calcium current to a new stationary level, which depended on the injection current. After the end of injection the calcium current was restored to its initial level. Current-voltage characteristic curves of the calcium current were not shifted along the voltage axis by cAMP injection, indicating that the reduction in this current was connected with a change in maximal calcium conductance. An increase in the frequency of depolarizing shifts from 0.1 to 0.5 Hz caused a decrease in the calcium current but did not affect the time course of the decrease in calcium current in response to injection of cAMP or the time course of its recovery after the end of injection. Theophylline an inhibitor of cyclic nucleotide phosphodiesterase, in a concentration of 1 mM in the external solution, lowered the amplitude of the calcium current by 50–75% of its initial value. In 40% of neurons, abolition of the action of theophylline by rinsing was incomplete, but in the rest the effect of theophylline was irreversible. It is postulated on the basis of the results that cytoplasmic compounds take part in regulation of the calcium current of molluscan neurons. The possible physiological role of this process is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 290–297, May–June, 1982.  相似文献   

7.
Identification of cholinoreceptors (CR) of the soma of neurons RPa3 and LPa3 of the snail is performed using selective cholinomimetics and cholinolytics during the recording of transmembrane ionic currents. Agonists of the nicotinic (NCR) and muscarinic (MCR) types of cholinolytics evoked a brief activation of the receptors, with the exception of carbamylcholine, followed by an irreversible blocking. All selective cholinomimetics bonded with the same membrane centers which acetylcholine (AC) activated. The nicotinic and muscarinic cholinolytics decreased the amplitude of the input current elicited by AC; however, the use of scopolamine and platyphylline was without effect. It is speculated that the soma of neurons RPa3 and LPa3 exhibits NCR and MCR which have a number of pharmacological features distinguishing them from the corresponding CR of vertebrates. The MCR of these neurons must be classed as a special subtype differing from the well-known M1 and M2 subtypes.M. V. Lomonosov State University of Moscow. Translated from Neirofiziologiya, Vol. 24, No. 1, pp. 77–86, January–February, 1992.  相似文献   

8.
Reversal potentials of transmembrane ionic currents induced by glutamate were determined in various D neurons ofHelix pomatia. Two types of neurons were found with mean reversal potentials of –10.6±1.2 and –40.0±0.6 mV. Neurons of the first group responded under ordinary conditions to glutamate application by a volley of action potentials. Neurons of the second group did not generate action potentials under the same conditions during glutamate application. With an increase in the dose of mediator the amplitude of D responses in these neurons increased only up to a certain limit, without reaching the critical depolarization level of the cell; a fall in the external chloride ion concentration led to a decrease in their reversal potential. The possible ionic mechanisms of glutamate-dependent depolarization responses of these groups of neurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 572–577, November–December, 1982.  相似文献   

9.
It was found that applying 10–8 M oxytocin (OT) affects the functional properties of three types of cholinoreceptors under conditions of voltage clamping at the membrane of identified ganglia neurons inHelix pomatia. This neuropeptide depressed acetycholine-(ACh-)induced sodium-potassium-calcium current in neuron RB3 without altering reversal potential of ACh-induced current. Two (sub-) types of cholinoreceptors were distinguished on the basis of findings on OT effects on ACh-induced chloride currents; ACh-induced chloride current was reduced by the action of OT on the cholinoreceptors of one of these (neuron F4) and increased in the case of neurons D5 and F86. The effects of applying OT and serotonin were reversible but not cumulative. Injection of OT exerted an action on ACh-induced chloride current independent of that of OT application. Involvement of cyclic adenosine monophosphate in OT-induced bimodal modulation of functional properties of three types of cholinoreceptors was demonstrated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziology, Vol. 22, No. 1, pp. 87–93, January–February, 1990.  相似文献   

10.
Steady-state current-voltage characteristics of the membrane and ionic currents arising during changes in membrane potential in bursting neurons ofHelix pomatia were studied by the voltage clamp method. The steady-state current-voltage characteristics of the membrane were shown to have a nonlinear region. Replacement of sodium ions by Tris-HC1 ions in the external solution completely abolishes this nonlinearity. Hyperpolarization of the membrane under voltage clamp conditions leads to the development of an outward current which reaches a maximum and then is inactivated. This current has a reversal potential in the region of the potassium equilibrium potential. Depolarization of the membrane to the threshold value for excitation of uncontrollable regions of the axon hillock causes the appearance of a slow inward current. After reaching a maximum, the inward current falls to zero. A model of generation of waves in a bursting neuron is suggested.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 193–202, March–April, 1978.  相似文献   

11.
Two new types of calcium channels were discovered during research in ionic currents in the somatic membrane ofHelix pomatia neurons, using an intracellular perfusion technique. Apart from the principal calcium current described in the literature with a holding potential of about –110 mV, an additional calcium current was observed activated at depolarizations of –40 to –80 mV and was not reduced when the cell was perfused with solutions containing fluoride anions. The kinetics of this current were well described in the context of the Hodgkin and Huxley model with a time constant of activation of 6–8 msec and of inactivation of 300–600 msec. It increased in amplitude as the Ca++ rose in the cellular environment but was reduced by extracellular addition of the Ca++ antagonists Co++, Ni++, and Cd++, and the organic blockers nifedipine and verapamil. The association constants of these substances with corresponding channels determined from the maximum of the current-voltage relationship were 2 (Ca++), 3 (Co++), 0.06 (nifedipine), and 0.2 mM (verapamil). The properties detected in this component of calcium conductance are compared with those of calcium channels in other excitatory formations and its possible functional role is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 5, pp. 627–633, September–October, 1985.  相似文献   

12.
Kononeko  N. I.  Osipenko  O. N. 《Neurophysiology》1988,20(5):477-483
Inward current produced by applying oxytocin (OT) to the neuronal soma (OTI) current) under conditions of voltage-clamping at the cell membrane was investigated inHelix pomatia. Replacing sodium with Tris ions in the external medium produced a considerable decline in OTI current. A reduction in the external concentration of chlorine ions by replacement with HEPES ions induced an increase in OTI current and a shift in its current-voltage relationship towards depolarization values. The presence of furosemide in the external solution reversibly inhibited OTI current. This current likewise declined reversibly following external application of imidazole and tolbutamide but was increased by theophylline action. It was inferred that OT receptors are present on the surface membrane of someHelix neurons which, when activated, lead to increased chlorine permeability — a process apparently mediated via the cyclic nucleotide system.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Kiev. Translated from Neirofiziologiya, Vol. 20, No. 5, pp. 652–659, September–October, 1988.  相似文献   

13.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

14.
The effects of injecting cells with adenosine monophosphate (AMP) and cyclic adenosine monophosphate (cAMP) on calcium current were investigated during intracellular dialysis ofHelix pomatia neurons. Microiontophoretically injected AMP was found to lead to reinstatement of calcium current following dialysis-induced wash-out, as well as considerable stabilization of this current with the extracellular medium at normal pH. Current-voltage relationship of the current would then undergo a 10 mV shift towards depolarization values. Perfusing the cell with a solution containing 10 mM AMP then produced a qualitatively identical effect. Injecting the neuron iontophoretically with cAMP led to a decline in the amplitude of calcium current under the same conditions. Neither raising the pH of the intracellular solution to 8.1 nor adding 4-aminopyridine in order to depress the hydrogen ion current produced a qualitative alteration in the effects of injecting AMP and cAMP on calcium current.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 6, pp. 769–776, November–December, 1988.  相似文献   

15.
Responses to electrophoretic application of acetylcholine and suberyldicholine were investigated in identified neurons (LPed-2 and LPed-3) isolated from the left pedal ganglion ofPlanorbarius corneus. When microelectrodes filled with potassium chloride were used the reversal potentials of responses to acetylcholine and suberyldicholine were less negative than when microelectrodes filled with potassium sulfate were used; these reversal potentials were shifted toward depolarization if chloride ions in the medium were replaced by sulfate. These facts indicate that the responses in both LPed-2 and LPed-3 depend on chloride ions. Reversal potentials for acetylcholine and suberyldicholine in LPed-3 were virtually identical (–51 and –50 mV respectively), but in LPed-2 they differed significantly (–46 and –62 mV respectively). Replacement of sodium ions by Tris ions shifted the reversal potential for acetylcholine in LPed-2 toward hyperpolarization but did not change the reversal potential for suberyldicholine. Benzohexonium had the same action. The reversal potential for acetylcholine in medium with a reduced sodium concentration or in the presence of benzohexonium was the same as for suberyldicholine. It is concluded that on neuron LPed-2 acetylcholine activates both acetylcholine receptors which control conductance for chloride ions and acetylcholine receptors which change conductance for sodium ions, whereas suberyldicholine acts only on acetylcholine receptors responsible for the chloride conductance of the membrane.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 533–540, September–October, 1980.  相似文献   

16.
17.
Extracellular application of oxytocin, Lys-vasopressin, and Leu-enkephalin to neuron RPa1 ofHelix pomatia evoked the generation of pacemaker potentials and the appearance of potentiation of spike activity of bursting type, characteristic of this cell. Noradrenalin and prostaglandins of the E group had a similar action. Dibutyryl-cyclic AMP, the phosphodiesterase inhibitor papaverine, and sodium fluoride, a nonspecific activator of adenylate cyclase, also initiated or potentiated bursting discharges of the neuron. It is suggested that the effects of oxytocin, Lys-vasopressin, Leu-enkephalin, noradrenalin, and prostaglandins of the E group are mediated through intracellular processes linked with activation of adenylate cyclase by these substances, leading to an increase in the cyclic AMP content in the nerve cell.P. K. Anokhin Research Institute of Normal Physiology, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 80–87, January–February, 1981.  相似文献   

18.
Response to application of and superfusion with solutions containing arginine-vasopressin and its derivatives (VPS), was investigated in identifiedHelix pomatia neurons. Different VPS exerted a similar effect on neurons in all cases. De- and hyperpolarizing as well as modulatory effects were shown. Depolarizing and hyperpolarizing response was accompanied by a rise and fall in steady-state conductance of the cell membrane. Reversal potential of response was determined as in the region of chloride reversal potential. Adding furosemide to the extracellular solution reversibly inhibited response to VPS. It was concluded from this that both de- and hyperpolarizing response took the form of an increase in the amplitude of trans-membrane ionic current induced by injecting cAMP into the neuron under the effects of superfusing the preparation with a VPS-containing VPS solution. Specific VPS receptors, probably associated with the cell cyclic nucleotide system, are thought to exist at the membrane of someHelix pomatia neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 368–373, May–June, 1990.  相似文献   

19.
Granule cells were dissociated from rat cerebella with a procedure that yields a 98% pure cell population. Potassium currents in these cells were studied using the patch-clamp technique. Depolarizing pulses of 10 mV step and 100 ms duration from a holding potential of –80 mV elicited two different potassium outward currents: a transient, low-voltage activated component and a long lasting, high-voltage activated component. At +30 mV, the total current reached an amplitude of 2 nA (mean value of 15 experiments). The reversal potential of the transient current, estimated by measuring tail currents, was –77 mV, close to that predicted by the Nernst equation. The transient current was half inactivated with a holding potential of –78 mV and completely inactivated with –50 mV or more positive holding potentials. Finally, the current decay could be fitted by the sum of two exponentials with time constants of about 20 and 250 ms.  相似文献   

20.
The effects of quinine on the peak amplitude and the decay of calcium currents (ICa) were investigated in nonidentified neurons isolated fromHelix pomatia. A concentration of 1×10–5–5×10–4 M quinine was found to produce a reversible dose-dependent deceleration in the decline of ICa ("lead" effect) and a reversible, slowly evolving dose-dependent reduction in ICa amplitude ("lag" effect). A reduction in amplitude down to half control level is observed at a quinine concentration of 6 ×10–5 M, while the current-voltage relationship of ICa shifts by 5–10 mV towards negative potentials. Results show that quinine successfully blocks calcium channels inHelix pomatia neurons.Institute of Brain Research, All-Union Mental Health Research Center, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 413–417, May–June, 1987.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号