首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

2.
Infusion of standard-dose rituximab (RTX) in chronic lymphocytic leukemia (CLL) patients promotes rapid complement activation and deposition of C3 fragments on CLL B cells. However, immediately after RTX infusions, there is substantial loss (shaving) of CD20 from circulating malignant cells. Because shaving can compromise efficacies of anticancer immunotherapeutic mAbs, we investigated whether shaving occurs in SCID mouse models. Z138 cells, a B cell line derived from human mantle cell lymphoma, were infused i.v. or s.c. The i.v. model recapitulates findings we previously reported for therapeutic RTX in CLL: i.v. infused RTX rapidly binds to Z138 cells in lungs, and binding is accompanied by deposition of C3 fragments. However, within 1 h targeted cells lose bound RTX and CD20, and these shaved cells are still demonstrable 40 h after RTX infusion. Z138 cells grow in tumors at s.c. injection sites, and infusion of large amounts of RTX (0.50 mg on each of 4 days) leads to considerable loss of CD20 from these cells. Human i.v. Ig blocked shaving, suggesting that FcgammaRI on cells of the mononuclear phagocytic system promote shaving. Examination of frozen tumor sections from treated mice by immunofluorescence revealed large areas of B cells devoid of CD20, with CD20 intact in adjacent areas; it is likely that RTX had opsonized Z138 cells closest to capillaries, and these cells were shaved by monocyte/macrophages. The shaving reaction occurs in neoplastic B cells in tissue and in peripheral blood, and strategies to enhance therapeutic targeting and block shaving are under development.  相似文献   

3.
We developed a murine IgG1 mAb, 5G9, following immunization of a BALB/c mouse with Daudi cells. By immunoprecipitation, 5G9 reacted with a 220-kDa Ag on Daudi cells, which reduced to four subunits (55, 65, 80, and 85 kDa). mAb 5G9 bound to 40-60% of peripheral blood B cells, weakly reacted with monocytes and granulocytes, and did not bind to erythrocytes, platelets, T cells, or NK cells. mAb 5G9 brightly stained scattered cells in human tonsil sections, which appeared to be dendritic cells (DC) by morphology. mAb 5G9 also stained scattered cells in cytospin slides of monocyte-derived DC with long, thin, beaded membrane processes, morphologically distinct from other monocyte-derived DC. Positive selection of blood mononuclear cells with mAb 5G9 and sheep anti-mouse IgG Dynabeads demonstrated an enriched population of DC. By flow cytometry analysis, these cells were CD19, CD20, CD22, CD40, CD44, CD83, CD86, IgD, and HLA-Dr positive and either kappa- or lambda-L chain positive. They did not express CD3, CD4, CD5, CD10, CD11b, CD13, CD25, CD56, CD14, CD33, or CD64. Isolated 5G9+ cells were potent APCs in allogeneic MLR, compared with 5G9- PBMC, 5G9- B cells, monocytes, and monocytes cultured in IL-4 and GM-CSF for 24 h. mAb 5G9 defines a novel peripheral blood cell with B cell phenotype and DC morphology and function: DC-like B cells. The significance of this cell in immune responses requires further study.  相似文献   

4.
Treatment of chronic lymphocytic leukemia (CLL) patients with standard dose infusion of rituximab (RTX), 375 mg/m2, induces clearance of malignant cells from peripheral blood after infusion of 30 mg of RTX. After completion of the full RTX infusion, substantial recrudescence of CLL cells occurs, and these cells have lost > 90% of CD20. To gain insight into mechanism(s) of CD20 loss, we investigated the hypothesis that thrice-weekly low-dose RTX (20 or 60 mg/m2) treatment for CLL over 4 wk would preserve CD20 and enhance leukemic cell clearance. During initial infusions in all 12 patients, the first 30 mg of RTX promoted clearance of > 75% leukemic cells. Four of six patients receiving 20 mg/m2 RTX retained > or = 50% CD20, and additional RTX infusions promoted further cell clearance. However, four of six patients receiving 60 mg/m2 had CD20 levels < 20% baseline 2 days after initial infusions, and additional RTX infusions were less effective, presumably due to epitope loss. Our results suggest that when a threshold RTX dose is exceeded, recrudesced RTX-opsonized cells are not cleared, due to saturation of the mononuclear phagocytic system, but instead are shaved of RTX-CD20 complexes by acceptor cells. Thrice-weekly low-dose RTX may promote enhanced clearance of circulating CLL cells by preserving CD20.  相似文献   

5.
The CD20 mAb ofatumumab (OFA) induces complement-mediated lysis of B cells. In an investigator-initiated phase II trial of OFA plus chemotherapy for chronic lymphocytic leukemia (CLL), OFA treatment promoted partial CLL B cell depletion that coincided with reduced complement titers. Remaining CLL B cells circulated with bound OFA and covalently bound complement breakdown product C3d, indicative of ongoing complement activation. Presumably, neither complement- nor effector cell-based mechanisms were sufficiently robust to clear these remaining B cells. Instead, almost all of the bound OFA and CD20 was removed from the cells, in accordance with previous clinical studies that demonstrated comparable loss of CD20 from B cells after treatment of CLL patients with rituximab. In vitro experiments with OFA and rituximab addressing these observations suggest that host effector mechanisms that support mAb-mediated lysis and tumor cell clearance are finite, and they can be saturated or exhausted at high B cell burdens, particularly at high mAb concentrations. Interestingly, only a fraction of available complement was required to kill cells with CD20 mAbs, and killing could be tuned by titrating the mAb concentration. Consequently, maximal B cell killing of an initial and secondary B cell challenge was achieved with intermediate mAb concentrations, whereas high concentrations promoted lower overall killing. Therefore, mAb therapies that rely substantially on effector mechanisms subject to exhaustion, including complement, may benefit from lower, more frequent dosing schemes optimized to sustain and maximize killing by cytotoxic immune effector systems.  相似文献   

6.
Dendritic cells (DC) are unique in their capacity to either stimulate or regulate T cells, and receptor/ligand pairs on DC and T cells are critically involved in this process. In this study we present such a molecule, which was discovered by us when analyzing the functional effects of an anti-DC mAb. This mAb, 11C9, reacted strongly with DC, but only minimally with lymphocytes. In MLR it constantly reduced DC-induced T cell activation. Therefore, we assumed that mAb 11C9 primarily exerts its functions by binding to a DC-structure. This does not seem to be the case, however. Preincubation of DC with mAb 11C9 before adding T cells had no inhibitory effect on T cell responses. Retroviral expression cloning identified the 11C9 Ag as CD63. This lysosomal-associated membrane protein (LAMP-3), is only minimally expressed on resting T cells but can, as we show, quickly shift to the surface upon stimulation. Cross-linkage of that structure together with TCR-triggering induces strong T cell activation. CD63 on T cells thus represents an alternative target for mAb 11C9 with its binding to activated T cells rather than DC being responsible for the observed functional effects. This efficient CD63-mediated costimulation of T cells is characterized by pronounced induction of proliferation, strong IL-2 production and compared with CD28 enhanced T cell responsiveness to restimulation. Particularly in this latter quality CD63 clearly surpasses several other CD28-independent costimulatory pathways previously described. CD63 thus represents an activation-induced reinforcing element, whose triggering promotes sustained and efficient T cell activation and expansion.  相似文献   

7.
The effects of anti-CD3 mAb on MHC-unrestricted cytotoxic activity of NK depleted PHA-activated human T cells were examined. Anti-CD3 mAb had variable effects on killing of K562 or Daudi targets. Whereas lower concentrations of OKT3 often inhibited lysis of either target, higher concentrations (greater than 1 micrograms/ml) frequently increased K562 killing and always augmented Daudi lysis. However, lysis of the renal cell carcinoma, Cur, was consistently inhibited by OKT3 over a broad concentration range. Such variable effects were not related to differential regulation of heterogeneous subsets of effector cells, as similar patterns of OKT3-mediated modulation of tumor cell lysis by T cell clones was also observed. Another IgG2a anti-CD3 mAb, 64.1, and either F(ab')2 fragments of OKT3 or intact OKT3 in the presence of aggregated human Ig were found to inhibit lysis of Cur, K562, and Daudi targets consistently. Additional experiments were carried out to determine whether modulation of CD3 accounted for the inhibitory effects of the anti-CD3 mAb. PMA was noted to cause modulation of CD3 from the surface of PHA or alloantigen-activated T cells, and the combination of anti-CD3 and PMA caused even more marked modulation of CD3. Whereas preincubation with PMA and/or anti-CD3 decreased alloantigen-specific cytotoxic T cell function in relative proportion to the loss of CD3 expression, no consistent relationship between CD3 expression and the capacity of PHA-activated T cells to kill Cur targets was noted. PMA alone caused no consistent alteration of Cur lysis. Moreover, in the presence of PMA, anti-CD3 mAb caused no significant inhibitory effect on Cur lysis, in spite of increased modulation and in some cases virtual total loss of surface CD3 expression. These findings indicate that when FcR interactions are prevented, anti-CD3 mAb consistently inhibit MHC-unrestricted cytotoxicity by PHA-activated T cells. Despite this, the data support the conclusion that CD3/TCR complex interactions with target cells are not required for either target cell recognition or triggering of lysis by MHC-unrestricted cytotoxic T cells.  相似文献   

8.
9.
We examined the effects of CD40 activation with dexamethasone (Dex) or 60Co--irradiation on the growth of malignant B cells in vitro, using the human multiple myeloma (MM) cell line, XG2, and the B lymphoma Daudi cell line as models. Both lines are resistant to Dex and irradiation; 10–7M Dex or 10 Gy of -irradiation induced only minimal growth arrest and apoptosis of the cells. Treatment of the cells with the agonistic anti-CD40 monoclonal antibody 5C11 partially inhibited the proliferation of the Daudi cells; XG2 underwent apoptosis. XG2 is an Interleukin-6 (IL-6)-dependent myeloma cell line and CD40 activation blocked XG2 in the G1 phase of the cell cycle, in a manner similar to the effect of IL-6 deprivation. Daudi was blocked in the G2/M phase after treatment with the agonistic CD40 mAb 5C11. Furthermore, the activation of CD40 on Daudi and XG2 enhanced their sensitivity to dexamethasone-and -irradiation -induced growth arrest and apoptosis. CD40 activation stimulated both anti-apoptotic Bcl-XL and pro-apoptotic Bax mRNA synthesis in the Daudi cell line; CD40 activation increased the Bax mRNA level but had no effect on the Bcl-XL mRNA level in the XG2 cell line. Apoptosis in both cell lines was associated with an increasing ratio of Bax-to-Bcl-XL both in mRNA and in protein levels. It is concluded that use of the anti-CD40 mAb 5C11 either by itself or in combination with chemotherapy and/or radiotherapy may have significant therapeutic potential.Z-H. Zhou and Qin Shi are equally contributed to this article.  相似文献   

10.
《The Journal of cell biology》1993,121(5):1121-1132
CD20 is a plasma membrane phosphoprotein expressed exclusively by B lymphocytes. mAb binding to CD20 alters cell cycle progression and differentiation, indicating that CD20 plays an essential role in B lymphocyte function. Whole-cell patch clamp and fluorescence microscopy measurements of plasma membrane ionic conductance and cytosolic-free Ca2+ activity, respectively, were used to directly examine CD20 function. Transfection of human T and mouse pre-B lymphoblastoid cell lines with CD20 cDNA and subsequent stable expression of CD20 specifically increased transmembrane Ca2+ conductance. Transfection of CD20 cDNA and subsequent expression of CD20 in nonlymphoid cells (human K562 erythroleukemia cells and mouse NIH-3T3 fibroblasts) also induced the expression of an identical transmembrane Ca2+ conductance. The binding of a CD20-specific mAb to CD20+ lymphoblastoid cells also enhanced the transmembrane Ca2+ conductance. The mAb-enhanced Ca2+ currents had the same conductance characteristics as the CD20- associated Ca2+ currents in CD20 cDNA-transfected cells. C20 is structurally similar to several ion channels; each CD20 monomer possesses four membrane spanning domains, and both the amino and carboxy termini reside within the cytoplasm. Biochemical cross-linking of cell-surface molecules with subsequent immunoprecipitation analysis of CD20 suggests that CD20 may be present as a multimeric oligomer within the membrane, as occurs with several known membrane channels. Taken together, these findings indicate that CD20 directly regulates transmembrane Ca2+ conductance in B lymphocytes, and suggest that multimeric complexes of CD20 may form Ca2+ conductive ion channels in the plasma membrane of B lymphoid cells.  相似文献   

11.
CD40/CD40L signaling promotes both B cell and CTL responses in vivo, the latter being beneficial in tumor models. Because CTL may also limit autoreactive B cell expansion in lupus, we asked whether an agonist CD40 mAb would exacerbate lupus due to B cell stimulation or would improve lupus due to CTL promotion. These studies used an induced model of lupus, the parent-into-F1 model in which transfer of DBA/2 splenocytes into B6D2F1 mice induces chronic lupus-like graft-vs-host disease (GVHD). Although agonist CD40 mAb treatment of DBA-->F1 mice initially exacerbated B cell expansion, it also strongly promoted donor CD8 T cell engraftment and cytolytic activity such that by 10 days host B cells were eliminated consistent with an accelerated acute GVHD. CD40 stimulation bypassed the requirement for CD4 T cell help for CD8 CTL possibly by licensing dendritic cells (DC) as shown by the following: 1) greater initial activation of donor CD8 T cells, but not CD4 T cells; 2) earlier activation of host DC; 3) host DC expansion that was CD8 dependent and CD4 independent; and 4) induction of acute GVHD using CD4-depleted purified DBA CD8+ T cells. A single dose of CD40 mAb improved lupus-like renal disease at 12 wk, but may not suffice for longer periods consistent with a need for continuing CD8 CTL surveillance. These results demonstrate that in the setting of lupus-like CD4 T cell-driven B cell hyperactivity, CTL promotion is both feasible and beneficial and the CTL-promoting properties of CD40 stimulation outweigh the B cell-stimulatory properties.  相似文献   

12.
CpG-containing oligodeoxynucleotides (CpG ODN) have broad-ranging immunostimulatory effects, including the generation of antitumor immune responses. Analysis of different CpG ODN have identified two classes: CpG-A ODN, which stimulate high levels of IFN-alpha production from plasmacytoid dendritic cells and weakly activate B cells, and CpG-B ODN, which strongly activate B cells but stimulate low production of IFN-alpha from plasmacytoid dendritic cells. Previously, we observed that CpG-B ODN (2006) induces TRAIL/Apo-2 ligand (Apo-2L)-mediated killing of tumor cells by CD14(+) PBMC. In this study, we extend our investigation of CpG ODN-induced TRAIL/Apo-2L expression and activity in PBMC to include CpG-A ODN. Of the two classes, IFN-alpha production and TRAIL/Apo-2L-mediated killing of tumor cells was greatest with CpG-A ODN. Surprisingly, CD3(+), CD14(+), CD19(+), and CD56(+) PBMC expressed high levels of TRAIL/Apo-2L following CpG-A ODN stimulation. When isolated, the CD19(+) PBMC (B cells) were able to kill tumor cells in a TRAIL/Apo-2L-dependent manner. As with CD14(+) PBMC, CD19(+) sorted B cells were capable of up-regulating TRAIL/Apo-2L expression when stimulated with IFN-alpha alone. Interestingly, agonist anti-CD40 mAb further enhanced the IFN-alpha-induced TRAIL/Apo-2L expression on CD19(+) B cells. These results are the first to demonstrate human B cell-mediated killing of tumor cells in a TRAIL/Apo-2L-dependent fashion.  相似文献   

13.
Two long-term cytolytic T lymphocyte (CTL) lines derived from the peripheral blood lymphocytes (PBL) of a single donor were analyzed for target specificity and involvement of cell surface molecules in CTL-target interactions. One line, AH2, was generated after stimulation with B lymphoblastoid cells. Cytolysis by these cells was restricted to targets expressing the appropriate HLA-A2 specificity and was blocked by mAb recognizing CD2, CD3, CD8, LFA-1, and LFA-3. The second line, AE1, was generated after stimulation with cultured endothelial cells derived from human newborn preputial microvessels. These CTL lysed all human target cells tested, except autologous cells and the Class I negative cell line Daudi. In addition, mAb specific for CD2, CD3, and CD8 did not affect cytolysis. Anti-LFA-1 and -LFA-3 mAb blocked cytolysis of B lymphoblastoid targets but not endothelial targets. These results indicate that some CTL utilize as yet uncharacterized cell surface structures for CTL-target interactions.  相似文献   

14.
In an attempt to identify the target recognition molecule(s) involved in the interaction between CD3- large granular lymphocyte (LGL) and a tumor cell target, monoclonal antibodies (mAb) to NK-susceptible K562 tumor cell membrane glycoproteins were developed. After screening by ELISA for reactivity to K562 membrane glycoproteins, two monoclonal antibodies were identified (mAb 35 and mAb 36). One of the monoclonal antibodies (mAb 36) was found to inhibit conjugation between LGL and K562 target cells and also to inhibit lysis of K562 by LGL. Upon further testing, mAb 36 also inhibited the binding between LGL and other NK-susceptible target cells, e.g., Daudi and Molt 4. In contrast, mAb 35, even though binding to K562, did not inhibit the binding of LGL to tumor targets and therefore was used as an isotype control. When mAb 36 was utilized as an affinity matrix, bound proteins specifically inhibited CD3- LGL-K562 conjugation. Experiments involving tunicamycin treatment of tumor target cells demonstrated that mAb 36 recognized a carbohydrate moiety rather than the protein core. Therefore, these data suggested that the target cell recognition molecule which is recognized by mAb 36 appears to be a membrane carbohydrate-associated molecule.  相似文献   

15.
We previously reported that 1 h after infusion of CD20 mAb rituximab in patients with chronic lymphocytic leukemia (CLL), >80% of CD20 was removed from circulating B cells, and we replicated this finding, based on in vitro models. This reaction occurs via an endocytic process called shaving/trogocytosis, mediated by FcγR on acceptor cells including monocytes/macrophages, which remove and internalize rituximab-CD20 immune complexes from B cells. Beers et al. reported that CD20 mAb-induced antigenic modulation occurs as a result of internalization of B cell-bound mAb-CD20 complexes by the B cells themselves, with internalization of ~40% observed after 2 h at 37°C. These findings raise fundamental questions regarding the relative importance of shaving versus internalization in promoting CD20 loss and have substantial implications for the design of mAb-based cancer therapies. Therefore, we performed direct comparisons, based on flow cytometry, to determine the relative rates and extent of shaving versus internalization. B cells, from cell lines, from patients with CLL, and from normal donors, were opsonized with CD20 mAbs rituximab or ofatumumab and incubated for varying times and then reacted with acceptor THP-1 monocytes to promote shaving. We find that shaving induces considerably greater loss of CD20 and bound mAb from opsonized B cells in much shorter time periods (75-90% in <45 min) than is observed for internalization. Both shaving/trogocytosis and internalization could contribute to CD20 loss when CLL patients receive rituximab therapy, but shaving should occur more rapidly and is most likely to be the key mechanism of CD20 loss.  相似文献   

16.
We previously demonstrated that anti-third-party CTLs (stimulated under IL-2 deprivation against cells with an MHC class I [MHC-I] background different from that of the host and the donor) are depleted of graft-versus-host reactivity and can eradicate B cell chronic lymphocytic leukemia cells in vitro or in an HU/SCID mouse model. We demonstrated in the current study that human allogeneic or autologous anti-third-party CTLs can also efficiently eradicate primary non-Hodgkin B cell lymphoma by inducing slow apoptosis of the pathological cells. Using MHC-I mutant cell line as target cells, which are unrecognizable by the CTL TCR, we demonstrated directly that this killing is TCR independent. Strikingly, this unique TCR-independent killing is induced through lymphoma MHC-I engagement. We further showed that this killing mechanism begins with durable conjugate formation between the CTLs and the tumor cells, through rapid binding of tumor ICAM-1 to the CTL LFA-1 molecule. This conjugation is followed by a slower second step of MHC-I-dependent apoptosis, requiring the binding of the MHC-I α2/3 C region on tumor cells to the CTL CD8 molecule for killing to ensue. By comparing CTL-mediated killing of Daudi lymphoma cells (lacking surface MHC-I expression) to Daudi cells with reconstituted surface MHC-I, we demonstrated directly for the first time to our knowledge, in vitro and in vivo, a novel role for MHC-I in the induction of lymphoma cell apoptosis by CTLs. Additionally, by using different knockout and transgenic strains, we further showed that mouse anti-third-party CTLs also kill lymphoma cells using similar unique TCR-independence mechanism as human CTLs, while sparing normal naive B cells.  相似文献   

17.
Anti‐CD20 murine or chimeric antibodies (Abs) have been used to treat non‐Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti‐CD20 Abs demonstrated to be effective in inducing regression of B‐cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti‐CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL‐2‐based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti‐CD20‐human interleukin‐2 (hIL‐2) immunocytokine (2B8‐Fc‐hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv‐Fc‐engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS‐PAGE and gel filtration. Purification yields using protein‐A affinity chromatography were in the range of 15–20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant‐type glycosylation. 2B8‐Fc‐hIL2 and the cognate 2B8‐Fc antibody, devoid of hIL‐2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody‐dependent cell‐mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8‐Fc‐hIL2, IL‐2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment.  相似文献   

18.
The mechanism of antibody-dependent complement-(C) mediated killing of Escherichia coli 0111B4, strain 12015 (12015), was examined. 12015 was resistant to serum killing when incubated in hypogammaglobulinemic serum (H gamma S) or pooled normal human serum (NHS) that had been previously adsorbed to remove specific antibody (Abs NHS). Presensitization with immune rabbit serum or purified immune rabbit IgG resulted in 1 to 3 log killing when 5 X 10(8) colony forming units (CFU)/ml were incubated in 10 to 40% Abs NHS. Binding of 125I-C3 and 131I-C9 to the bacterial surface of the presensitized and the nonpresensitized strain was quantitated when these organisms were incubated in 10, 20, and 40% Abs NHS. Stable binding of up to 3.0 X 10(5) molecules of C3 and 8.0 X 10(4) molecules of C9 to presensitized and nonpresensitized isolates occurred in the highest concentration of serum, but there was no killing without presensitization. Similar results were found when Abs NHS was chelated with ethylene bis glycoltetraacetic acid containing 2 mM MgCl2 (Mg EGTA) to block classical pathway activation, indicating that antibody mediated the bactericidal reaction through the alternative pathway. Deposition of C3 and C9 and killing of 120 15 in 10% Abs NHS or 10% H gamma S was measured after presensitization with increasing amounts of IgG, F(ab')2, or Fab'. There was a dose-dependent increase in C3 deposition and killing, but only minimal change in C9 binding when 1.0 X 10(3) to 3.2 X 10(4) IgG or F(ab')2/CFU were bound to the bacterial surface. In contrast, there was no increase in C3 or C9 binding and no bacterial killing when 1 X 10(3) to 3.4 X 10(4) molecules Fab'/CFU were bound to the bacterial surface. These experiments show that immune IgG and F(ab')2 can mediate killing of E. Coli 0111B4 by the alternative pathway without changing the extent of terminal C component attachment to the bacterial surface.  相似文献   

19.
Blocking the CD28/B7 and/or CD154/CD40 costimulatory pathways promotes long-term allograft survival in many transplant models where CD4(+) T cells are necessary for rejection. When CD8(+) T cells are sufficient to mediate rejection, these approaches fail, resulting in costimulation blockade-resistant rejection. To address this problem we examined the role of lymphotoxin-related molecules in CD8(+) T cell-mediated rejection of murine intestinal allografts. Targeting membrane lymphotoxin by means of a fusion protein, mAb, or genetic mutation inhibited rejection of intestinal allografts by CD8(+) T cells. This effect was associated with decreased monokine induced by IFN-gamma (Mig) and secondary lymphoid chemokine (SLC) gene expression within allografts and spleens respectively. Blocking membrane lymphotoxin did not inhibit rejection mediated by CD4(+) T cells. Combining disruption of membrane lymphotoxin and treatment with CTLA4-Ig inhibited rejection in wild-type mice. These data demonstrate that membrane lymphotoxin is an important regulatory molecule for CD8(+) T cells mediating rejection and suggest a strategy to avoid costimulation blockade-resistant rejection.  相似文献   

20.
Monoclonal antibody (mAb) G7 has been developed and appears to recognize a triggering structure on porcine natural killer (NK) cells and granulocytes. G7 mAb binds to approximately 13% of lymphocytes, 70% of monocytes, and greater than 95% of granulocytes. G7 mAb does not react with B cells. G7 mAb immunoprecipitates a heterodispersed molecule of approximately 40 kDa. Functionally, whole but not F(ab')2 fragments of G7 mAb enhance NK killing of Fc receptor positive K562, U937, and MOLT-4 targets but not Fc receptor negative CEM, WEHI-164, or YAC-1 targets. Both whole and F(ab')2 fragments of G7 mAb inhibit lymphocyte-mediated antibody-dependent cellular cytotoxicity. Interestingly, G7 mAb induces dramatic levels of granulocyte killing against nucleated K562 targets. These results suggest that G7 mAb recognizes a trigger molecule involved in porcine cellular cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号