首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

2.
Goda M  Fujii R 《Zoological science》1998,15(3):323-333
Measurements of spectral reflectance from the sky-blue portion of skin from the common surgeonfish, Paracanthurus hepatus, showed a relatively steep peak at around 490 nm. We consider that a multilayer thin-film interference phenomenon of the non-ideal type, which occurs in stacks of very thin light-reflecting platelets in iridophores of that region, is primarily responsible for the revelation of that hue. The structural organization of the iridophore closely resembles that of bluish damselfish species, although one difference is the presence of iridophores in a monolayer in the damselfish compared to the double layer of iridophores in the uppermost part of the dermis of surgeonfish. If compared with the vivid cobalt blue tone of the damselfish, the purity of the blue hue of the surgeonfish is rather low. This may be ascribable mainly to the double layer of iridophores in the latter since incident lightrays are complicatedly reflected and scattered in the strata. The dark-blue hue of the characteristic scissors-shaped pattern on the trunk of surgeonfish is mainly due to the dense population of melanophores, because iridophores are only present there in a scattered fashion. Photographic and spectral reflectance studies in vivo, as well as photomicrographic, photo-electric, and spectrometric examinations of the state of chromatophores in skin specimens in vitro, indicate that both melanophores and iridophores are motile. Physiological analyses disclosed that melanophores are under the control of the sympathetic nervous and the endocrine systems, while iridophores are regulated mainly by nerves. The body color of surgeonfish shows circadian changes, and becomes paler at night; this effect may be mediated by the pineal hormone, melatonin, which aggregates pigment in melanophores.  相似文献   

3.
The dermal chromatophore unit   总被引:3,自引:3,他引:0       下载免费PDF全文
Rapid color changes of amphibians are mediated by three types of dermal chromatophores, xanthophores, iridophores, and melanophores, which comprise a morphologically and physiologically distinct structure, the dermal chromatophore unit. Xanthophores, the outermost element, are located immediately below the basal lamella. Iridophores, containing light-reflecting organelles, are found just beneath the xanthophores. Under each iridophore is found a melanophore from which processes extend upward around the iridophore. Finger-like structures project from these processes and occupy fixed spaces between the xanthophores and iridophores. When a frog darkens, melanosomes move upward from the body of the melanophore to fill the fingers which then obscure the overlying iridophore. Rapid blanching is accomplished by the evacuation of melanosomes from these fingers. Pale coloration ranging from tan to green is provided by the overlying xanthophores and iridophores. Details of chromatophore structure are presented, and the nature of the intimate contact between the chromatophore types is discussed.  相似文献   

4.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

5.
Clonal cultures were performed with the use of neural crest cells and their derivatives, chromatophores, from Xenopus laevis in order to elucidate the state of commitment in early embryogenesis. Neural crest cells that outgrew from neural tube explants were isolated and plated at clonal density. Cloned neural crest cells differentiated and gave rise to colonies that consisted of 1) only melanophores, 2) only xanthophores, or 3) melanophores and xanthophores. Xanthophores and iridophores, which differentiated in vitro, were also isolated and cloned. Cloned xanthophores proliferated in a stable fashion and did not lose their properties. On the other hand, cloned iridophores converted into melanophores as they proliferated. These results suggest that there is heterogeneity in the state of commitment of neural crest cells immediately after migration with regard to chromatophore differentiation and that iridophore determination is relatively labile (at least in vitro), whereas melanophore and xanthophore phenotypes are stable.  相似文献   

6.
7.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

8.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

9.
Summary The structural changes in the chromatophores of Hyla arborea related to changes in skin color were studied by electron microscopy and reflectance microspectrophotometry. During a change from a light to a darker green color, the melanosomes of the melanophores disperse and finally surround the iridophores and partly the xanthophores. The iridophores change from cup-shape to a cylindrical or conical shape with a simultaneous change in the orientation of the platelets from being parallel to the upper surface of the iridophores to being more irregular. The xanthophores change from lens-shape to plate-shape. The color change from green to grey seems always to go through a transitional black-green or dark olive green to dark grey. During this change the xanthophores migrate down between the iridophores, and in grey skins they are sometimes found beneath them. The pterinosomes gather in the periphery of the cell, while the carotenoid vesicles aggregate around the nucleus. The iridophores in grey skin are almost ball-shaped with concentric layers of platelets. A lighter grey color arises from a darker grey by an aggregation of melanosomes. The chromatophore values previously defined for Hyla cinerea are applicable in Hyla arborea, and the ultrastructural studies support the assumptions previously made to explain these values.The author wishes to thank Drs. P. Budtz, J. Dyck and L.O. Larsen for valuable discussions and J. Dyck for kindly providing the spectrophotometer granted him by the Danish National Science Foundation. The skilled technical assistance of Mrs. E. Schiøtt Hansen is gratefully acknowledged. Permission was granted by the Springer-Verlag to republish the illustrations of W.J. Schmidt (1920)  相似文献   

10.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机...  相似文献   

11.
Summary The skin of the lizard, Anolis carolinensis, changes rapidly from bright green to a dark brown color in response to melanophore stimulating hormone (MSH). Chromatophores responsible for color changes of the skin are xanthophores which lie just beneath the basal lamina containing pterinosomes and carotenoid vesicles. Iridophores lying immediately below the xanthophores contain regularly arranged rows of reflecting platelets. Melanophores containing melanosomes are present immediately below the iridophores. The ultrastructural features of these chromatophores and their pigmentary organelles are described. The color of Anolis skin is determined by the position of the melanosomes within the melanophores which is regulated by MSH and other hormones such as norepinephrine. Skins are green when melanosomes are located in a perinuclear position within melanophores. In response to MSH, they migrate into the terminal processes of the melanophores which overlie the xanthophores above, thus effectively preventing light penetration to the iridophores below, resulting in skins becoming brown. The structural and functional characteristics of Anolis chromatophores are compared to the dermal chromatophore unit of the frog.This study was supported in part by GB-8347 from the National Science Foundation.Contribution No. 244, Department of Biology, Wayne State University.The authors are indebted to Dr. Joseph T. Bagnara for his encouragement during the study and to Dr. Wayne Ferris for his advice and the use of his electron microscope laboratory.  相似文献   

12.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
1. The mechanism of the action of atropine, which is known to accelerate the dispersion response of fish melanophores, was examined by use of various receptor antagonists.2. The effects of atropine were found to be independent of adenosine receptors, beta-adrenoceptors and MSH receptors on the melanophore membrane.3. Analogs of atropine, such as scopolamine, also had a potent pigment-dispersing effect on melanophores, whereas the quaternary ammonium derivatives, which are positively charged molecules, had only a small effect.4. These results suggest that the possible site of atropine action is within the chromatophores themselves.5. In addition to the melanosome-dispersing effect, atropine caused a shift in the spectral peak of reflected light toward shorter wavelengths and the dispersion of leucosomes in the motile iridophores of the blue damselfish and in the leucophores of the medaka, respectively.  相似文献   

14.
The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain‐ and loss‐of‐function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltkmne, display ectopic iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltkmne allele carries a missense mutation in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic competition.  相似文献   

15.
The colours of the European tree frog, Hvlu urhorea , depend on three types of chromatophores: in dermo-epidermal direction melanophores, iridophores, and xanthophores. The ability ofthis species to assume a wide range ofcolours implies that very extensive changes in the chromatophores take place, which in turn require control by several regulating factors. The responses of the different chromatophore types to hormones with known melanophore-affecting abilities (α-MSH, β-MSH, ACTH, melatonin) were tested in an in vitro system (freshly explanted skin) using reflectance microspectrophotometry, light microscopy and time-lapse cinemicrography.
α-MSH, β-MSH and ACTH all induce a rapid dispersion of melanosomes during the 10 min after addition. The degree of pigment dispersion induced by ACTH is slightly less than after stimulation with α-MSH or β-MSH.
The iridophores react to MSH or ACTH treatment with a contraction of the entire cell (causing a reduction in reflecting area), and a change in orientation of the platelets, causing a decrease in selective reflectance. The iridophores appear to be especially sensitive to ACTH. A very striking feature of the iridophores when studied with time-lapse cinematography is their strong pulsations (approx. once per minute).
The xanthophores react to MSH and ACTH with a contraction. These cells appear to be sensitive to β-MSH in particular.
Melatonin strongly counteracts the effects of α-MSH, β-MSH and ACTH on all chromatophores.
These studies confirm the dynamic nature not only of the melanophores, but also of the iridophores and xanthophores, as pointed out by Schmidt (1920) and Nielsen (1978a). Furthermore the differences in the time course of the stimulation of the different types of chromatophores by various hormones may provide an experimental basis for the explanation of colour changes in Hyfa arboreu.  相似文献   

16.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

17.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

18.
In the periodic albino mutant (a(p)/a(p)) of Xenopus laevis, peculiar leucophore-like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild-type (+/+). These leucophore-like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of alpha-melanocyte stimulating hormone (alphaMSH), and (4) containing an abundance of bizarre-shaped, reflecting platelet-like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore-like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to alphaMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore-like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore-like cells are essentially similar to melanophores of the wild-type with respect to their localization in the skin and manner of response to alphaMSH, (3) the leucophore-like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet-like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore-like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

19.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

20.
Fast dynamic control of skin coloration is rare in the animal kingdom, whether it be pigmentary or structural. Iridescent structural coloration results when nanoscale structures disrupt incident light and selectively reflect specific colours. Unlike animals with fixed iridescent coloration (e.g. butterflies), squid iridophores (i.e. aggregations of iridescent cells in the skin) produce dynamically tuneable structural coloration, as exogenous application of acetylcholine (ACh) changes the colour and brightness output. Previous efforts to stimulate iridophores neurally or to identify the source of endogenous ACh were unsuccessful, leaving researchers to question the activation mechanism. We developed a novel neurophysiological preparation in the squid Doryteuthis pealeii and demonstrated that electrical stimulation of neurons in the skin shifts the spectral peak of the reflected light to shorter wavelengths (greater than 145 nm) and increases the peak reflectance (greater than 245%) of innervated iridophores. We show ACh is released within the iridophore layer and that extensive nerve branching is seen within the iridophore. The dynamic colour shift is significantly faster (17 s) than the peak reflectance increase (32 s), revealing two distinct mechanisms. Responses from a structurally altered preparation indicate that the reflectin protein condensation mechanism explains peak reflectance change, while an undiscovered mechanism causes the fast colour shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号