首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

2.
Our 1 year study was aimed at assessing seasonal patterns and controls on phytoplankton primary production (PPR) and biomass (chlorophyll a) in a fourth order section of the middle Cape Fear River in North Carolina, USA, and to determine the impact of three low-head lock and dam (LD) structures on these variables within the 70 km study reach of this coastal river. Mean concentrations of NO3 –N, NH4 +–N and soluble reactive phosphorus (SRP) averaged 52.9, 6.0, and 3.6 μmol l−1 in monthly sampling, while the average light attenuation coefficient was 2.4 m−1. The average euphotic depth was 2.1 m. Nutrient concentrations and attenuation coefficients were not significantly different above versus below each LD, or along the entire study reach. Significantly higher concentrations of dissolved O2 below versus above each LD were attributed to re-aeration during spillway transit. No seasonal pattern in physicochemical properties was apparent. Phytoplankton chlorophyll a concentrations ranged from <1 to 36 μg l−1, while rates of primary production ranged from 18 to 2,580 mg C m−2 day−1, with values for both variables peaking in the spring and early summer. Chlorophyll a and primary productivity values were consistently higher above versus below each LD in May and June suggesting a seasonal effect, but values were otherwise similar such that overall means were not significantly different. Several factors point to light as the primary control on phytoplankton in the middle Cape Fear River: high nutrient concentrations; a low ratio of euphotic : mixing depth (0.46); progressive increases in chlorophyll a and radiocarbon uptake in all treatments in quarterly nutrient enrichment bioassays conducted at levels of irradiance elevated relative to in situ river values; and consistently low quarterly values of (maximum rate of chlorophyll-normalized C uptake; ≤3.7 mg C mg chl a−1 h−1) and I k (light saturation parameter; ≤104 μmol photons m−2 s−1) for photosynthetic light–response (PI) curves. Handling editor: L. Naselli-Flores  相似文献   

3.
Primary production of phytoplankton and secondary production of a daphnid and a chaoborid were studied in a small eutrophic pond. The gross primary production of phytoplankton was 290 gC m−2 per 9 months during April–December. Regression analysis showed that the gross primary production was related to the incident solar radiation and the chlorophylla concentration and not to either total phosphorus or total inorganic nitrogen concentration. The mean chlorophylla concentration (14.2 mg m−3), however, was about half the expected value upon phosphorus loading of this pond. The mean zooplankton biomass was 1.60 g dry weight m−2, of whichDaphnia rosea and cyclopoid copepods amounted to 0.69 g dry weight m−2 and 0.61 g dry weight m−2, respectively. The production ofD. rosea was high during May–July and October and the level for the whole 9 months was 22.6 g dry weight m−2.Chaoborus flavicans produced 10 complete and one incomplete cohorts per year. Two consecutive cohorts overlapped during the growing season. The maximum density, the mean biomass, and the production were 19,100 m−2, 0.81 g dry weight m−2, and 11.7 g dry weight m−2yr−1, respectively. As no fish was present in this pond, the emerging biomass amounted to 69% of larval production. The production ofC. flavicans larvae was high in comparison with zooplankton production during August–September, when the larvae possibly fed not only on zooplankton but also algae.  相似文献   

4.
Daily and annual production rates of eight cladoceran and two rotifer species, and their seasonal variation and trophic role in the large, turbid, tropical Lake Tana, Ethiopia, were assessed in 2003–2005. Laboratory cultures were used to infer cladoceran development times, and secondary production was estimated using the growth increment summation and recruitment methods. Production for both taxa was highest in October–November, after the rainy season, and lowest in January–April during the dry season. Cladocerans and rotifers comprised 24% of the metazoan zooplankton biomass of 45.1 mg DW m?3, but comprised 53% of its production. Daily production for cladocerans and rotifers, respectively, was 1.23 and 0.94 mg DW m?3 d?1, and annual production was 447.9 and 353.5 mg DW m?3 y?1. Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, decomposed Microcystis provides their main food source during the pre- and post-rainy months in Lake Tana.  相似文献   

5.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

6.
Studies on biogeochemical cycling of carbon in the Chilka Lake, Asia’s largest brackish lagoon on the east coast of India, revealed, for the first time, strong seasonal and spatial variability associated with salinity distribution. The lake was studied twice during May 2005 (premonsoon) and August 2005 (monsoon). It exchanges waters with the sea (Bay of Bengal) and several rivers open into the lake. The lake showed contrasting levels of dissolved inorganic carbon (DIC) and organic carbon (DOC) in different seasons; DIC was higher by ∼22% and DOC was lower by ∼36% in premonsoon than in monsoon due to seasonal variations in their supply from rivers and in situ production/mineralisation. The DIC/DOC ratios in the lake during monsoon were influenced by physical mixing of end member water masses and by intense respiration of organic carbon. A strong relationship between excess DIC and apparent oxygen utilisation showed significant control of biological processes over CO2 production in the lake. Surface partial pressure of CO2 (pCO2), calculated using pH–DIC couple according to Cai and Wang (Limnol and Oceanogr 43:657–668, 1998), exhibited discernable gradients during monsoon through northern (1,033–6,522 μatm), central (391–2,573 μatm) and southern (102–718 μatm) lake. The distribution pattern of pCO2 in the lake seems to be governed by pCO2 levels in rivers and their discharge rates, which were several folds higher during monsoon than premonsoon. The net CO2 efflux, based on gas transfer velocity parameterisation of Borges et al. (Limnol and Oceanogr 49(5):1630–1641, 2004), from entire lake during monsoon (141 mmolC m−2 d−1 equivalent to 2.64 GgC d−1 at basin scale) was higher by 44 times than during premonsoon (9.8 mmolC m−2 d−1 ≈ 0.06 GgC d−1). 15% of CO2 efflux from lake in monsoon was contributed by its supply from rivers and the rest was contributed by in situ heterotrophic activity. Based on oxygen and total carbon mass balance, net ecosystem production (NEP) of lake (−308 mmolC m−2 d−1 ≈ −3.77 GgC d−1) was found to be almost in consistent with the total riverine organic carbon trapped in the lake (229 mmolC m−2 d−1 ≈ 2.80 GgC d−1) suggesting that the strong heterotrophy in the lake is mainly responsible for elevated fluxes of CO2 during monsoon. Further, the pelagic net community production represented 92% of NEP and benthic compartment plays only a minor role. This suggests that Chilka lake is an important region in biological transformation of organic carbon to inorganic carbon and its export to the atmosphere.  相似文献   

7.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

9.
Benthic algal communities can play an important role in matter and energy flux of shallow lakes. Their contribution to total primary production of lakes has been largely unexplored. The aim of this study was to estimate the primary production of the epipsammic algal communities at different water depths in Lake Balaton (Hungary) with photosynthetic measurements performed in laboratory. The photosynthesis of the benthic algae of different origin was studied at nine different irradiance levels, in three replicates. The maximum photosynthetic rate (P max) was always higher in samples from the shallow parts than those from the deeper regions of the lake. Along the west–east longitudinal axis of the lake P max decreased in the southern part and increased in the middle of the lake as a consequence of differences in the chlorophyll-a concentrations. Knowing P max, I k, global radiation and extinction coefficient, the primary production (mg C m−2 day−1) of the epipsammic algal community was calculated at different water depths. In the shallow regions at 0.5 and 1 m water depth 75–95% and 60–85% of the production was attributable to the epipsammon. The percentage contribution of epipsammon was at 2 m water depth 20–65%. In the deeper pelagic region (>3 m) more than 85% of the primary production originated from the phytoplankton.  相似文献   

10.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

11.
Seasonal nutrient enrichment experiments (short-term bioassays) were conducted in three Florida lakes of different trophic states to determine the effects of addition of various nutrient combinations upon chlorophyll a and phytoplankton standing crops. Nutrient enriched surface water samples with crustacean zooplankton removed were incubated in situ in clear polyethylene bags for 3 to 6 days. The 25 factorial design employed two levels (ambient and enriched) of each of five nutrients [NH4 +, PO inf4 sup3− , Fe -EDTA, SiO inf3 sup2− and a cation (Ca2+ or K+) or trace elements]. Ammonium produced significant increases in chlorophyll a and phytoplankton standing crops in all experiments. Phosphate produced similar results in the mesotrophic lake, but the eutrophic lakes had both positive and nonsignificant responses which varied seasonally between lakes. Iron increased chlorophyll a in most experiments but affected total phytoplankton standing crop only during the summer and fall. Silicon had negative effects in some experiments. Cations and trace elements produced marked differences between lakes for chlorophyll a, but total phytoplankton standing crop showed few significant responses. Synergistic responses to two- and three-factor interactions were observed in all lakes. Differences in the responses of phytoplankton taxonomic divisions to enrichment may be responsible for much of the between lake variation in chlorophyll a and total phytoplankton volume responses. Nutrient limitations in these lakes are discussed and related to limnological factors and predictive models.  相似文献   

12.
We assessed the effect of salinity on plant growth and leaf expansion rates, as well as the leaf life span and the dynamics of leaf production and mortality in seedlings of Avicennia germinans L. grown at 0, 170, 430, 680, and 940 mol m−3 NaCl. The relative growth rates (RGR) after 27 weeks reached a maximum (10.4 mg g−1 d−1) in 170 mol m−3 NaCl and decreased by 47 and 44% in plants grown at 680 and 940 mol m−3 NaCl. The relative leaf expansion rate (RLER) was maximal at 170 mol m−3 NaCl (120 cm m−2 d−1) and decreased by 57 and 52% in plants grown at 680 and 940 mol m−3 NaCl, respectively. In the same manner as RGR and RLER, the leaf production (P) and leaf death (D) decreased in 81 and 67% when salinity increased from 170 to 940 mol m−3 NaCl, respectively. Since the decrease in P with salinity was more pronounced than the decrease in D, the net accumulation of leaves per plant decreased with salinity. Additionally, an evident increase in annual mortality rates (λ) and death probability was observed with salinity. Leaf half-life (t 0.5) was 425 days in plants grown at 0 mol m−3 NaCl, and decreased to 75 days at 940 mol m−3 NaCl. Thus, increasing salinity caused an increase in mortality rate whereas production of new leaves and leaf longevity decreased and, finally, the leaf area was reduced.  相似文献   

13.
We investigated the photosynthesis–light intensity (P–I) relationships of phytoplankton collected from a sublittoral sand bank in the Seto Inland Sea, Japan, under different temperature conditions. In spite of low chlorophyll a concentration (<3 mg m−3), phytoplankton had considerably high photosynthetic potential (>10 mg C (mg chl a)−1 h−1) in the study area. Based on the P–I relationships, we conducted numerical simulation of areal primary production using published data on water temperature, chlorophyll a concentration, and irradiance. The areal primary production ranged between 159 and 187 g C m−2 year−1. This production was within the range of typical values reported previously in deeper areas of the Seto Inland Sea. The productivity in the sand bank area was discussed in relation to water current, allochthonous resource input, and fisheries.  相似文献   

14.
We conducted a 4-year study of juvenile Pinus ponderosa fine root (≤2 mm) responses to atmospheric CO2 and N-fertilization. Seedlings were grown in open-top chambers at three CO2 levels (ambient, ambient+175 μmol/mol, ambient+350 μmol/mol) and three N-fertilization levels (0, 10, 20 g m−2 year−1). Length and width of individual roots were measured from minirhizotron video images bimonthly over 4 years starting when the seedlings were 1.5 years old. Neither CO2 nor N-fertilization treatments affected the seasonal patterns of root production or mortality. Yearly values of fine-root length standing crop (m m−2), production (m m−2 year−1), and mortality (m m−2 year−1) were consistently higher in elevated CO2 treatments throughout the study, except for mortality in the first year; however, the only statistically significant CO2 effects were in the fine-root length standing crop (m m−2) in the second and third years, and production and mortality (m m−2 year−1) in the third year. Higher mortality (m m−2 year−1) in elevated CO2 was due to greater standing crop rather than shorter life span, as fine roots lived longer in elevated CO2. No significant N effects were noted for annual cumulative production, cumulative mortality, or mean standing crop. N availability did not significantly affect responses of fine-root standing crop, production, or mortality to elevated CO2. Multi-year studies at all life stages of trees are important to characterize belowground responses to factors such as atmospheric CO2 and N-fertilization. This study showed the potential for juvenile ponderosa pine to increase fine-root C pools and C fluxes through root mortality in response to elevated CO2.  相似文献   

15.
Photosynthetic characteristics of Dunaliella salina with high (red form) and low β-carotene (green form) concentrations were studied. D. salina growing in brine saltworks exhibited a high level of β-carotene (15 pg cell−1). The rate of oxygen evolution as a function of irradiance was higher in the red than in the green form (on chlorophyll basis). Photosynthetic inhibition of the green form was observed above 500 μmol m−2 s−1. The red form appeared more resistant to high irradiance and no inhibition in O2 evolution was observed up 2000 μmol m−2 s−1. However, when these results are expressed on a cell number basis the rate of oxygen evolution was significantly higher in the green form. Carbonic anhydrase (CA) activity (total, soluble, membrane bound) was found in red and green forms. CA was higher in the red form on a chlorophyll basis, but lower if expressed on a protein basis. The light dependent rate of oxygen evolution and photoinhibition depends on the concentration of β-carotene in D. salina cells.  相似文献   

16.
The bioerosive potential of the intertidal chiton Acanthopleura gemmata on One Tree Reef was determined by quantification of CaCO3 in daily faecal pellet production of individuals transplanted into mesocosms after nocturnal-feeding forays. Mean bioerosive potential was estimated at 0.16 kg CaCO3 chiton−1 yr−1. Bioerosion rates were estimated for populations on two distinct chiton habitats, reef margin (0.013 kg CaCO3 m−2 yr−1) and beachrock platform (0.25 kg CaCO3 m−2 yr−1). Chiton density on the platform was orders of magnitude greater than on the reef margin. The surface-lowering rate (0.16 mm m−2 yr) due to bioerosion by the beachrock population is a substantial contribution to the total surface-lowering rate of 2 mm m−2 yr−1 previously reported for One Tree Reef across all erosive agents. At high densities, the contribution of A. gemmata to coral reef bioerosion budgets may be comparable to other important bioeroders such as echinoids and fish.  相似文献   

17.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

18.
Annual variations in nutrients, algal biomass, and primary production were investigated in Lake Ohnuma, Japan, in 1996 in order to compare them with 1977. Chlorophyll a concentrations gradually increased after the ice melted and reached a maximal value of 20.7 μg l−1 in August. Phosphate concentrations in the lake were close to the detection limit throughout the study period, whereas sufficient nitrate remained even in the productive summer season. In contrast, in the summer of 1977, both nutrients were exhausted, and primary production was less than 0.2 g C m−2 day−1. Primary production in 1996 ranged from 0.4 to 5.8 g C m−2 day−1, which was 2 to 30 times higher than 20 years ago. These results indicate that the lake has become eutrophic in the last two decades. A comparison of the nutrients in the inflowing river between 1977 and 1996 indicated that nitrate and ammonium concentrations were markedly elevated in the rivers, and therefore the nitrogen loading to the lake tripled. Received: March 1, 1999 / Accepted: October 18, 1999  相似文献   

19.
This study aims to assess the photoprotective potential of desiccation-induced curling in the light-susceptible old forest lichen Lobaria pulmonaria by using chlorophyll fluorescence imaging. Naturally curled thalli showed less photoinhibition-induced limitations in primary processes of photosynthesis than artificially flattened specimens during exposures to 450 μmol m−2 s−1 in the laboratory after both 12- (medium dose treatment) and 62-h duration (high dose treatment). Thallus areas shaded by curled lobes during light exposure showed unchanged values of measured chlorophyll fluorescence parameters (F V/F M, ΦPS II), whereas non-shaded parts of curled thalli, as well as the mean for the entire flattened thalli, showed photoinhibitory limitation after light treatments. Furthermore, the chlorophyll fluorescence imaging showed that the typical small-scale reticulated ridges on the upper side of L. pulmonaria caused a spatial, small-scale reduction in damage due to minor shading. Severe dry-state photoinhibition readily occurred in flattened and light-treated L. pulmonaria, although the mechanisms for such damage in a desiccated and inactive stage are not well known. Natural curling is one strategy to reduce the chance for serious photoinhibition in desiccated L. pulmonaria thalli during high light exposures.  相似文献   

20.
The objective of this investigation was to analyze the primary production of the dominant hydrophytes by monitoring levels of organic matter and organic carbon and estimating photosynthetic potential via the total chlorophyll content. The survey was conducted in Lake Provala (Serbia) throughout the peak vegetation period of the year 2000. The contents of organic matter and organic carbon for Myriophyllum spicatum L. were 105.11 g m−2 and 73.66 g m−2, Nymphoides peltata (Gmel.) Kunt. were 95.51 g m−2 and 45.26 g m−2 and Ceratophyllum demersum L. were 52.17 g m−2 and 29.75 g m−2. Chlorophyll A (Chl a) and chlorophyll A+B (Chl a+b) pigments ranged from 1.54 mg g−1(Chl a) and 2.1 mg g−1(Chl a+b) in M. spicatum to 5.27 mg g−1(Chl a) and 7.53 mg g−1(Chl a+b) in C. demersum. At full leaf out, the latter aquatic plants exceeded 50% cover of the open water surface. All species achieved maximum growth in June, but significant differences in growth dynamics were observed. At the end of the vegetation period, these plants sink to the bottom and decompose  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号