首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late-infantile ceroid-lipofuscinosis (CLN2) is an autosomal recessively inherited, neurodegenerative disease in humans. The CLN2 locus has been mapped to Chromosome (Chr) 11p15, and its sequence and genomic organization have recently been reported. In the present study, the cDNA sequence, exon/intron organization, and chromosomal localization of a mouse ortholog of the CLN2 gene are described. The mouse cDNA contains an open reading frame that predicts a protein product of 562 amino acids. The mouse and human coding regions are 86% and 88% identical at the nucleic acid and amino acid levels, respectively. One less codon appears in the mouse cDNA when compared with the human ortholog. The mouse gene (Cln2) spans more than 6 kb and consists of 13 exons separated by introns ranging in size from 111 to 1259 bp. Length polymorphism in an (AC)n microsatellite in intron 3 of the mouse Cln2 gene was used to perform segregation analysis with The Jackson Laboratory DNA Panel Mapping Resource. On the basis of this analysis, the Cln2 gene was localized to a region of mouse Chr 7 that corresponds to human Chr 11p15. Characterization of the mouse Cln2 gene will facilitate generation of a mouse model for late-infantile ceroid-lipofuscinosis by gene targeting and identification of functionally important regions of the Cln2 protein. Received: 25 May 1999 / Accepted: 22 July 1999  相似文献   

2.
致病基因的定位候选克隆   总被引:2,自引:0,他引:2  
基因组研究的迅猛发展,使我们有必要重新审视致病基因克隆的各种策略与技术,以及人类基因组研究在致病基因克隆中的作用。定位候选克隆基因策略强调充分利用已知的细胞遗传学、医学遗传学、分子遗传学、分子生物学和生物化学知识,特别是人类基因组研究的最新成果,综合功能克隆、定位克隆与传统候选基因研究的策略,分离鉴定致病基因。今天的定位克隆已几乎不再需要染色体步移,甚至有可能避开cDNA筛选。  相似文献   

3.
The CLN6 gene that causes variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), a recessively inherited neurodegenerative disease that features blindness, seizures, and cognitive decline, maps to 15q21-23. We have used multiallele markers spanning this approximately 4-Mb candidate interval to reveal a core haplotype, shared in Costa Rican families with vLINCL but not in a Venezuelan kindred, that highlighted a region likely to contain the CLN6 defect. Systematic comparison of genes from the minimal region uncovered a novel candidate, FLJ20561, that exhibited DNA sequence changes specific to the different disease chromosomes: a G-->T transversion in exon 3, introducing a stop codon on the Costa Rican haplotype, and a codon deletion in exon 5, eliminating a conserved tyrosine residue on the Venezuelan chromosome. Furthermore, sequencing of the murine homologue in the nclf mouse, which manifests recessive NCL-like disease, disclosed a third lesion-an extra base pair in exon 4, producing a frameshift truncation on the nclf chromosome. Thus, the novel approximately 36-kD CLN6-gene product augments an intriguing set of unrelated membrane-spanning proteins, whose deficiency causes NCL in mouse and man.  相似文献   

4.
The neuronal ceroid lipofuscinoses (NCL) are a heterogenous group of monogenic autosomal recessive inherited progressive neurodegenerative diseases characterized by brain and retinal atrophy and the intracellular accumulation of autofluorescent lysosomal storage bodies resembling lipofuscin in neurons and other cells. Until today, eight forms of NCL have been classified in humans by clinical criteria, which result from mutations in at least six different genes (TPP1, CLN2, PPT1, CLN5, CLN6, and CLN8). NCL has also been reported in various domestic animal species including cattle, goat, sheep, cat, and certain dog breeds. In this report, the experimental analysis of canine PPT1, CLN5, CLN6, and CLN8 full-length cDNA sequences is described, and the current whole genome sequence assembly was used for gene structure analyses. Characterization of the four canine genes revealed a conserved organization with respect to the human orthologs. In general the gene size in dog is smaller compared to the human sequence due to shorter intron length. Using four individuals of Tibetan terrier with NCL, and a single affected Polish Owczarek Nizinny (PON) dog, we excluded the complete coding region of canine PPT1 and CLN8 and three of four exons of CLN5 and six of seven exons of CLN6 harboring disease-causing mutations.  相似文献   

5.
Chromosome 13 is one of the poorly mapped human chromosomes. As an example, only two cloned genes have been assigned to bands 13q22–q31. Our characterization of the critical region for the variant form of late infantile neuronal ceroid lipofuscinosis (vLINCL, locus definition CLN5) disease region on 13q22 resulted in the identification of the sequences encoding the BTF3 protein homologue gene (HGMW-approved symbol BTF3) and a novel pseudogene for RNA Helicase A (HGMW-approved symbol DDX9P). Precise visual assignment to the physical clones covering this region and the positional relationships of these genes were achieved by the use of tyramine enhancement of Fiber-FISH hybridization signals, demonstrating the power of this technique in efficient positioning of coding regions on the physical maps.  相似文献   

6.
7.
Positional cloning efforts of genes mutated in Batten disease and in the Finnish type of variant late infantile neuronal ceroid lipofuscinosis resulted in the identification of two novel genes, CLN3 and CLN5, and corresponding gene products that proved to be residents of lysosomes. Although the clinical phenotype of these NCL subtypes differs in the age of onset, average life span and EEG findings, the major component of material accumulating in patients' lysosomes is subunit c of mitochondrial ATPase in both these diseases. The CLN3 and CLN5 genes show ubiquitous expression patterns and are targeted to lysosomes in vitro, but the observed synaptosomal localization of the CLN3 protein in neurons would suggest some cell specificity in targeting and function of these proteins. So far, 31 different mutations of the CLN3 gene have been described in Batten patients, with one deletion of 1.02 kb accounting for 75% of disease alleles worldwide. Four CLN5 mutations are known, with one premature stop representing the major founder mutation in the isolated Finnish population. Functional studies of the yeast homolog of CLN3 and increased pH in patients' lysosomes would suggest an involvement of this protein in lysosomal pH homeostasis. Knock-out mouse models for CLN3 have been produced and the histopathology bears a close resemblance to human counterparts with characteristic lysosomal accumulations. Both CLN3 and CLN5 mouse models will provide experimental tools to resolve the pathological cascade in these neurodegenerative diseases.  相似文献   

8.
9.
10.
XPMC2 is a Xenopus gene identified on the basis of its ability to correct a mitotic defect in fission yeast. Here we report the identification of cDNA clones for human XPMC2H, its mapping to the tuberous sclerosis gene TSC1 region on 9q34, determination of genomic structure, and identification of several coding region polymorphisms. The predicted protein has strong sequence similarity to the Xenopus gene. Through SSCP and heteroduplex analysis of genomic DNA, we found two intragenic polymorphisms but no evidence for significant mutations in patients with tuberous sclerosis in this gene.  相似文献   

11.
To improve the utility of increasingly large numbers of available unannotated and initially poorly annotated genomic sequences for proteome analysis, we demonstrate that effective protein identification can be made on a large and unannotated genome. The strategy developed is to translate the unannotated genome sequence into amino acid sequence encoding putative proteins in all six reading frames, to identify peptides by tandem mass spectrometry (MS/MS), to localize them on the genome sequence, and to preliminarily annotate the protein via a similarity search by BLAST. These tasks have been optimized and automated. Optimization to obtain multiple peptide matches in effect extends the searchable region and results in more robust protein identification. The viability of this strategy is demonstrated with the identification of 223 cilia proteins in the unicellular eukaryotic model organism Tetrahymena thermophila, whose initial genomic sequence draft was released in November 2003. To the best of our knowledge, this is the first demonstration of large-scale protein identification based on such a large, unannotated genome. Of the 223 cilia proteins, 84 have no similarity to proteins in NCBI's nonredundant (nr) database. This methodology allows identifying the locations of the genes encoding these novel proteins, which is a necessary first step to downstream functional genomic experimentation.  相似文献   

12.
A Streamlined Random Sequencing Strategy for Finding Coding Exons   总被引:1,自引:0,他引:1  
The random (shotgun) DNA sequencing strategy is used for most large-scale sequencing projects, including the identification of human disease genes after positional cloning. The principle of the method--sequence assembly from overlap--requires the candidate gene region to be partitioned into 15- to 20-kb pieces (usually λ inserts), themselves randomly subcloned into M13 prior to sequencing with a 6- to 8-fold redundancy. Most often, a time-consuming directed strategy must be invoked to close the remaining gaps. Ultimately, computer-based methods are invoked to locate putative coding exons within the finished genomic sequence. Given the small average size of vertebrate exons, I show here that they can be detected from the computer analysis of the individual runs, much before completion of contiguity. However, the successful assessment of coding potential from the raw data depends on a combination of new sequence masking techniques. When the identification of coding exons is the primary goal, the usual random sequencing strategy can thus be greatly optimized. The streamlined approach requires only a 2- to 2.5-fold sequencing redundancy, can dispense with the subcloning in λ and the closure of gaps, and can be fully automated. The feasibility of this strategy is demonstrated using data from the X-linked Kallmann syndrome gene region.  相似文献   

13.
Batten disease, the juvenile form of neuronal ceroid lipofuscinosis, is a prevalent neuron degenerative disorder of childhood. A 1.02-kb genomic deletion in the Batten disease gene CLN3 has been determined to be a common mutation. We developed a PCR method to screen for this deletion and tested 43 Batten disease probands. We found 36% (31/86) of Batten disease chromosomes did not carry the 1.02-kb deletion. Of the three heterozygotes for the 1.02-kb deletion, a novel G-to-A missense mutation at nucleotide 1020 of the CLN3 cDNA sequence was found on two of the non-1.02-kb deletion chromosomes. The missense mutation resulted in a substitution of glutamic acid (E) by lysine (K) at position 295 (E295 K). The E295 K mutation causes a change in predicted local protein conformation. This glutamic acid is a highly conserved acidic amino acid, being present in human, mouse, dog and yeast, which suggests it may play an important role in the function of the Batten disease protein. Received: 12 May 1997 / Accepted: 21 August 1997  相似文献   

14.
Several publicly funded large-scale sequencing efforts have been initiated with the goal of completing the first reference human genome sequence by the year 2005. Here we present the results of analysis of 11.8 Mb of genomic sequence from chromosome 16. The apparent gene density varies throughout the region, but the number of genes predicted (84) suggests that this is a gene-poor region. This result may also suggest that the total number of human genes is likely to be at the lower end of published estimates. One of the most interesting aspects of this region of the genome is the presence of highly homologous, recently duplicated tracts of sequence distributed throughout the p-arm. Such duplications have implications for mapping and gene analysis as well as the predisposition to recurrent chromosomal structural rearrangements associated with genetic disease.  相似文献   

15.
16.
Forward genetics using zebrafish is a powerful tool for studying vertebrate development through large-scale mutagenesis. Nonetheless, the identification of the molecular lesion is still laborious and involves time-consuming genetic mapping. Here, we show that high-throughput sequencing of the whole zebrafish genome can directly locate the interval carrying the causative mutation and at the same time pinpoint the molecular lesion. The feasibility of this approach was validated by sequencing the m1045 mutant line that displays a severe hypoplasia of the exocrine pancreas. We generated 13 Gb of sequence, equivalent to an eightfold genomic coverage, from a pool of 50 mutant embryos obtained from a map-cross between the AB mutant carrier and the WIK polymorphic strain. The chromosomal region carrying the causal mutation was localized based on its unique property to display high levels of homozygosity among sequence reads as it derives exclusively from the initial AB mutated allele. We developed an algorithm identifying such a region by calculating a homozygosity score along all chromosomes. This highlighted an 8-Mb window on chromosome 5 with a score close to 1 in the m1045 mutants. The sequence analysis of all genes within this interval revealed a nonsense mutation in the snapc4 gene. Knockdown experiments confirmed the assertion that snapc4 is the gene whose mutation leads to exocrine pancreas hypoplasia. In conclusion, this study constitutes a proof-of-concept that whole-genome sequencing is a fast and effective alternative to the classical positional cloning strategies in zebrafish.  相似文献   

17.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessively inherited lysosomal storage disease involving a mutation in the CLN3 gene. The sequence of CLN3 was determined in 1995; however, the localization of the CLN3 gene product (Cln3p) was not confirmed. In this study, we investigated endogenous Cln3p using two peptide antibodies raised against two distinct epitopes of murine Cln3p. Identification of the liver 60 kDa protein as Cln3p was ascertained by amino acid sequence analysis using tandem mass spectrometry. Liver Cln3p was predominantly localized in the lysosomal membranes, not in endoplasmic reticulum (ER) or Golgi apparatus. As the tissue concentration of brain Cln3p was much lower than that of liver Cln3p, it could be detected only after purification from brain extract using anti-Cln3p IgG Sepharose. The apparent molecular masses of liver Cln3p and brain Cln3p were determined to be about 60 kDa and 55 kDa, respectively. Both brain and liver Cln3p were deglycosylated by PNGase F treatment to form polypeptides with almost the same molecular mass (45 kDa). However, they were not affected by Endo h treatment. In addition, it was also elucidated that the amino terminal region of Cln3p faces the cytosol.  相似文献   

18.
The molecular basis of Kufs disease is unknown, whereas a series of genes accounting for most of the childhood-onset forms of neuronal ceroid lipofuscinosis (NCL) have been identified. Diagnosis of Kufs disease is difficult because the characteristic lipopigment is largely confined to neurons and can require a brain biopsy or autopsy for final diagnosis. We mapped four families with Kufs disease for whom there was good evidence of autosomal-recessive inheritance and found two peaks on chromosome 15. Three of the families were affected by Kufs type A disease and presented with progressive myoclonus epilepsy, and one was affected by type B (presenting with dementia and motor system dysfunction). Sequencing of a candidate gene in one peak shared by all four families identified no mutations, but sequencing of CLN6, found in the second peak and shared by only the three families affected by Kufs type A disease, revealed pathogenic mutations in all three families. We subsequently sequenced CLN6 in eight other families, three of which were affected by recessive Kufs type A disease. Mutations in both CLN6 alleles were found in the three type A cases and in one family affected by unclassified Kufs disease. Mutations in CLN6 are the major cause of recessive Kufs type A disease. The phenotypic differences between variant late-infantile NCL, previously found to be caused by CLN6, and Kufs type A disease are striking; there is a much later age at onset and lack of visual involvement in the latter. Sequencing of CLN6 will provide a simple diagnostic strategy in this disorder, in which definitive identification usually requires invasive biopsy.  相似文献   

19.
鸡端粒酶RNA基因的克隆   总被引:1,自引:0,他引:1  
本研究采用扩增条件优化的PCR扩增技术,以MDCC-MSBl细胞基因组DNA为模板扩增出鸡端粒酶RNA(chicken telomerase RNA,chTR)全长基因,克隆到pMD18-T载体中,经酶切鉴定和PCR鉴定后测定序列.序列分析表明所克隆的鸡端粒酶RNA基因全长465 bp,其中模板区的11个核苷(5'-CUAACCCUAAU-3')合成端粒亚单位(TTAGGG)n.chTR基因的克隆为进一步研究chTR在马立克氏病发病过程中的作用以及马立克氏病的发病机制提供可能的序列基础.  相似文献   

20.
The neuronal ceroid lipofuscinoses (NCLs, Batten disease) are recessively inherited neurodegenerative disorders that affect humans and other animals, characterised by brain atrophy and the accumulation of lysosome derived fluorescent storage bodies in neurons and most other cells. Common clinical signs include blindness, ataxia, dementia, seizures and premature death. The associated genes for six different human forms have been identified (CLN1, CLN2, CLN3, CLN5, CLN6 and CLN8), and three other human forms suggested (CLNs 4, 7 and 9). A form of NCL in Australian Devon cattle is caused by a single base duplication (c.662dupG) in bovine CLN5. This mutation causes a frame-shift and premature termination (p.Arg221GlyfsX6) which is predicted to result in a severely truncated protein, analogous to disease causing mutations in human Finnish late infantile variant NCL (CLN5), and a simple genetic diagnostic test has been developed. The symptoms and disease course in cattle also matches CLN5. Only one initiation site was found in the bovine gene, equivalent to the third of four possible initiation sites in the human gene. As cattle are anatomically and physiologically similar to humans with a human-like central nervous system and easy to maintain and breed, they provide a valuable alternative model for CLN5 studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号