首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
C1s-induced vascular permeability in C2-deficient guinea pigs   总被引:4,自引:0,他引:4  
Normal guinea pigs that have been intradermally injected with C1s exhibit increased vascular permeability at the injection site. Guinea pigs that are genetically deficient in complement component C2 do not exhibit increased vascular permeability when given a similar injection. The C2-deficient guinea pigs respond normally to injections of bradykinin and kallikrein, suggesting that these animals can respond to kinins and have a normal kininogen pathway. When the C2-deficient guinea pigs are given guinea pig C2 before C1s injection, increased vascular permeability is observed. These results demonstrate a definite requirement for complement component C2 in the generation of C1s-induced vascular permeability.  相似文献   

2.
Mouse leukocytes were studied for membrane receptors for the third C component by rosette formation with C coated erythrocytes (EAC). Methods were devised for the preparation of EAC complexes containing either mouse C3b or mouse C3d. EAC 1-3dmo were prepared from EA treated with whole mouse serum while EAC 1-3bmo were produced from EAC 142hu treated with whole mouse serum containing sodium suramin. The specificity of the EAC complexes for mouse leukocytes was confirmed by inhibition experiments using fluid phase human C3d. Low concentrations of fluid phase human C3d inhibited EAC1-3dmo rosettes but failed to inhibit EAC 1-3bmo rosettes. Eight-fold higher concentrations of fluid phase C3d caused partial inhibition of EAC1-3bmo rosette formation with lymphocytes, but not with other types of murine leukocytes. Thus mouse leukocytes apparently contain the same two types of C receptors as do human and guinea pig leukocytes. Mouse CR1 is specific for a non-C3d region of C3b, (possibly analogous to human C3c) whereas mouse CR2 is specific for both C3d and the C3d region of C3b.  相似文献   

3.
We have now demonstrated that activated complement component C1s cleaves beta 2-microglobulin at the position identical to that at which beta 2-microglobulin is cleaved in serum of patients suffering from lung cancer. The main cleavage is in the disulphide loop C-terminal to Lys-58, generating a modified form of beta 2-microglobulin with a two-chain structure. The C-terminal Lys-58 in the A chain is highly susceptible to removal by a carboxypeptidase-B-like activity causing the formation of des-Lys58-beta 2-microglobulin. This is the first demonstration of a noncomplement protein substrate for the proteolytic activity of C1s. The C1s-induced cleavage of beta 2-microglobulin can be inhibited in the presence of C1 esterase inhibitor, demonstrating a regulatory function of C1 esterase inhibitor in the C1s-induced cleavage of beta 2-microglobulin.  相似文献   

4.
Angiopoietin-1 protects the adult vasculature against plasma leakage   总被引:69,自引:0,他引:69  
Pathological increases in vascular leakage lead to edema and swelling, causing serious problems in brain tumors, in diabetic retinopathy, after strokes, during sepsis and also in inflammatory conditions such as rheumatoid arthritis and asthma. Although many agents and disease processes increase vascular leakage, no known agent specifically makes vessels resistant to leaking. Vascular endothelial growth factor (VEGF) and the angiopoietins function together during vascular development, with VEGF acting early during vessel formation, and angiopoietin-1 acting later during vessel remodeling, maturation and stabilization. Although VEGF was initially called vascular permeability factor, there has been less focus on its permeability actions and more effort devoted to its involvement in vessel growth and applications in ischemia and cancer. Recent transgenic approaches have confirmed the profound permeability effects of VEGF (refs. 12-14), and have shown that transgenic angiopoietin-1 acts reciprocally as an anti-permeability factor when provided chronically during vessel formation, although it also profoundly affects vascular morphology when thus delivered. To be useful clinically, angiopoietin-1 would have to inhibit leakage when acutely administered to adult vessels, and this action would have to be uncoupled from its profound angiogenic capabilities. Here we show that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.  相似文献   

5.
Sheep erythrocytes (E) sensitized with anti-E antibody (A) were reacted with guinea pig C1 (C1gp) and human C4 (C4hu) or guinea pig C4 (C4gp) to prepare EAC1, 4b. Treatment of the EAC1, 4b with a buffer containing EDTA removes C1rgp and C1sgp, resulting in the formation of EAC4b. EAC4b prepared in this way were found to be lysed by human or guinea pig serum in a gelatin Veronal-buffered saline containing 2 mM MgCl2 and 8 mM EGTA (Mg-EGTA-GVB). In the hemolytic sensitivity of EAC4bhu, essentially no difference was noted whether IgG or IgM antibodies were used for preparation of EAC4bhu. The extent of the hemolysis of EAC4bhu was dependent on the dose of C4bhu. Because EAC4bhu were lysed even by C2-deficient human serum, C3 convertase of the classical complement pathway would not be involved in the hemolysis of EAC4bhu. Furthermore, the reactivity of EAC4bhu with serum in Mg-EGTA-GVB remained even after treatment of the intermediate cells with 1 mM PMSF, indicating that any remaining C1gp was not responsible for the hemolysis. Therefore, the hemolysis of EAC4b by sera in Mg-EGTA-GVB was considered to be mediated via activation of the alternative complement pathway (ACP). Pretreatment of EAC4bhu with anti-C4hu antibody or C4-binding protein suppressed the hemolysis of EAC4bhu via the ACP activation. Furthermore, EAC4bhu were more sensitive to hemolysis by the reaction with a mixture of C3, B, D, and H followed by rat serum in EDTA-GVB than EAC1qgp were. These results indicate that C4b molecules on the cell membrane participate in the activation of ACP.  相似文献   

6.
The influence of various peptides containing the aromatic amino acids phenylalanine and tyrosine on the formation of the enzyme EAC1423 of the complement system from component C3 and enzyme EAC142 was investigated. Kinetic analysis of enzyme EAC1423 formation and studies on the binding of the C3b fragment of 125I-labelled component C3 to enzyme EAC142 both showed that binding of the C3b fragment of component C3 was decreased by the peptides. Kinetic studies on component-C3 turnover in the fluid phase of enzyme EAC142 failed to reveal effects of the peptides. However, an initial lag in component-C3 turnover occurred that at constant component-C3 concentration was inversely proportional to enzyme EAC142 concentration. This lag in enzyme EAC142 activity is considered as an indication that the interaction of enzyme EAC142 with component C3 possibly does not follow simple Michaelis-Menten kinetics, as was previously assumed. It is shown that the stages after enzyme EAC1423 formation are not influenced by the peptides, suggesting a high degree of specificity of the peptides for the inhibition of enzyme EAC1423 formation.  相似文献   

7.
The intermediate product EAC1-8 released cytoplasmic components as a result of at least two sequential reactions after its interaction with C9. Binding of C9 to EAC1-8 occurred in a few minutes even at 0 degrees C. Trypsinization of EAC1-9 prepared and held at low temperature resulted in nullification of the potential hemolysis of these cells. A brief incubation at 30 or 37 degrees resulted in the formation of an intermediate whose hemolytic potential could not be nullified by trypsin. The failure of trypsin to nullify hemolysis was attributed to the insertion of C9 into the cell membrane. Studies on the effec of EDTA or low temperature suggested that the reported temperature-dependent step in E* formation described by Frank et al. was the insertion of C9. The results of the studies with 86Rb-labeled EAC1-8 indicated that a transmembrane channel was not formed until after the C9 had been inserted and a further reaction or reactions had occurred.  相似文献   

8.
Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). It has been suggested that patients with an elevated level of the free soluble form of dengue virus (DV) nonstructural protein 1 (sNS1) are at risk of developing DHF. To understand the role of sNS1 in blood, we searched for the host molecule with which NS1 interacts in human plasma by affinity purification using a GST-fused NS1. Complement inhibitory factor clusterin (Clu), which naturally inhibits the formation of terminal complement complex (TCC), was identified by mass spectrometry. A recombinant sNS1 produced from 293T cells and sNS1 from DV-infected Vero cells interacted with human Clu. Since an activated complement system reportedly causes vascular leakage, the interaction between sNS1 and Clu may contribute to the progression of DHF.  相似文献   

9.
Vascular leakage in multiple organs is a characteristic pathological change in sepsis. Our recent study revealed that ascorbate protects endothelial barrier function in microvascular endothelial cell monolayers through inhibiting serine/threonine protein phosphatase 2A (PP2A) activation (Han M, Pendem S, Teh SL, Sukumaran DK, Wu F, Wilson JX. Free Radic Biol Med 48: 128-135, 2010). The present study addressed the mechanism of protection by ascorbate against vascular leakage in cecal ligation and puncture (CLP)-induced septic peritonitis in mice. CLP caused NADPH oxidase activation and endothelial nitric oxide synthase (eNOS) uncoupling to produce superoxide, increased NO production by inducible NOS (iNOS) and neuronal NOS (nNOS) activity, and elevated 3-nitrotyrosine (a product of peroxynitrite) formation and PP2A activity in the hindlimb skeletal muscles at 12 h after CLP. The increase in PP2A activity was associated with decreased levels of phosphorylated serine and threonine in occludin, which was immunoprecipitated from freshly harvested endothelial cells of the septic skeletal muscles. Moreover, CLP increased the vascular permeability to fluorescent dextran and Evans blue dye in skeletal muscles. An intravenous bolus injection of ascorbate (200 mg/kg body wt), given 30 min prior to CLP, prevented eNOS uncoupling, attenuated the increases in iNOS and nNOS activity, decreased 3-nitrotyrosine formation and PP2A activity, preserved the phosphorylation state of occludin, and completely inhibited the vascular leakage of dextran and Evans blue. A delayed ascorbate injection, given 3 h after CLP, also prevented the vascular permeability increase. We conclude that ascorbate injection protects against vascular leakage in sepsis by sequentially inhibiting excessive production of NO and superoxide, formation of peroxynitrite, PP2A activation, and occludin dephosphorylation. Our study provides a scientific basis for injection of ascorbate as an adjunct treatment for vascular leakage in sepsis.  相似文献   

10.
Summary In the present study, the effect of the cell synchronization on the detection of T and B cell surface markers of two continuous lines of lymphoid cells (FL-74 and CT45-S) was examined. Suspension cultures were synchronized by deprivation of isoleucine and surface markers were quantitated by T rosette formation with guinea pig erythrocytes (E) and B rosette formation with an erythrocyte-antibody-complement (EAC) complex. After 24 hr, cells were resuspended in complete culture medium. Virtually 100% of FL-74 cells expressed the T cell marker at time 0, with a progressive decline to 80% at saturation density. A bell-shaped curve for expression of the EAC marker on CT45-S cells was seen with maximum expression in the logarithmic phase of the growth cycle. Spent culture medium was examined for the presence of free soluble receptor. Preincubation of E and EAC in appropriate old medium resulted in 42% inhibition of E rosettes and 42% inhibition of EAC rosettes with FL-74 and CT45-S cells, respectively. Thus quantitation of lymphocyte subpopulations as B, T or null cells with these cellular markers may be influenced by the age of the cell examined, phase of the cell cycle and the amount of free receptor present in the surrounding medium. This research was supported in part by contract NO1 CP 5-3571 with the Virus Cancer Program of the NCI, NIH, PHS grant no. 2 RO1 A1-09022-07, Allergy and Infectious Diseases NIH, PHS and The State of Ohio Canine Research Funds.  相似文献   

11.
The Ras signalling pathway has major roles in normal cell function and oncogenesis. C3G is a guanine nucleotide exchange factor for members of the Ras family of GTPases. We generated a mouse strain with a hypomorphic C3G allele. C3G(gt/gt) mutant embryos died of vascular defects around E11.5 due to haemorrhage and vascular integrity defects. Vascular supporting cells did not develop appropriately. C3G-deficient fibroblasts responded to PDGF-BB abnormally, exhibited cell adhesion defects and lacked paxillin and integrin-beta1-positive cell adhesions. In contrast, integrin-beta3-positive cell adhesions formed normally. These results show that C3G is required for (1) vascular myogenesis, (2) the formation of paxillin- and integrin beta1-positive, but not integrin beta3-positive, cell adhesions and (3) normal response to PDGF, necessary for vascular myogenesis.  相似文献   

12.
The formation of the products of microsomal metabolism of the cyclic nitrosamine, nitrosohexamethyleneimine (NO-HEX) were studied. Information on the origins of the oxygen atoms in four major metabolites of NO-HEX was obtained by metabolizing this compound in an 18O2 atmosphere using microsomes and cytosol, beta- and gamma-Hydroxy-NO-HEX are formed as a result of the insertion of a hydroxyl group derived from molecular oxygen into NO-HEX. All of the oxygen atoms in epsilon-aminocaproate (EAC) were derived from water. Approximately half of the molecules of epsilon- hydroxycaproate ( EHC ) contain an 18O atom; thus, half of the alpha-hydroxy-NO-HEX formed incorporates a hydroxyl group derived from molecular oxygen with the remainder of the hydroxyls being from water. To account for the above data and the related metabolic origins of EAC and EHC ( Hecker and McClusky , Cancer Res., 42 (1982) 59; Hecker et al., Teratogen. Carcinogen. Mutagen (1982) in press), we have proposed a mechanism for the formation of these compounds from cyclic nitrosamines catalyzed by microsomal and cytosolic enzymes.  相似文献   

13.
Vascular endothelial growth factor (VEGF) is a key stimulant of angiogenesis, which is the process of generating new capillary blood vessels. Inhibition of the vascular endothelial growth factor receptor (VEGFR) kinase is known to result in blockage of angiogenesis. A pharmacophore was developed based on the binding of ATP to the hinge region of the kinase domain of VEGFR and a database search of 18,000 compounds was conducted. Selected hits were assessed for their ability to limit the induction of web-like network of capillary tubes by the human umbilical vascular endothelial cells. Two compounds (1 and 4) showed good inhibitory ability to prevent sprouting and closed polygon formation of the tubular networks, promising them to be lead compounds. Compound 4 showed 60% inhibition at 0.05 microM.  相似文献   

14.
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients’ sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with β-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.  相似文献   

15.
Vascular leak is a key driver of organ injury in diseases, and strategies that reduce enhanced permeability and vascular inflammation are promising therapeutic targets. Activation of the angiopoietin‐1 (ANG1)‐Tie2 tyrosine kinase signaling pathway is an important regulator of vascular quiescence. Here we describe the design and construction of a new soluble ANG1 mimetic that is a potent activator of endothelial Tie2 in vitro and in vivo. Using a chimeric fusion strategy, we replaced the extracellular matrix (ECM) binding and oligomerization domain of ANG1 with a heptameric scaffold derived from the C‐terminus of serum complement protein C4‐binding protein α. We refer to this new fusion protein biologic as Hepta‐ANG1, which forms a stable heptamer and induces Tie2 phosphorylation in cultured cells, and in the lung following intravenous injection of mice. Injection of Hepta‐ANG1 ameliorates vascular endothelial growth factor‐ and lipopolysaccharide‐induced vascular leakage, in keeping with the known functions of Angpt1‐Tie2 in maintaining quiescent vascular stability. The new Hepta‐ANG1 fusion is easy to produce and displays remarkable stability with high multimericity that can potently activate Tie2. It could be a new candidate ANG1 mimetic therapy for treatments of inflammatory vascular leak, such as acute respiratory distress syndrome and sepsis.  相似文献   

16.
S Krakowka  R Olsen  G Cockerell 《In vitro》1977,13(2):119-124
In the present study, the effect of the cell synchronization on the detection of T and B cell surface markers of two continuous lines of lymphoid cells (FL-74 and CT45-S) was examined. Suspension cultures were synchronized by deprivation of isoleucine and surface markers were quantitated by T rosette formation with guinea pig erythrocytes (E) and B rosette formation with an erythrocyte-antibody-complement (EAC) complex. After 24 hr, cells were resuspended in complete culture medium. Virtually 100% of FL-74 cells expressed the T cell marker at time 0, with a progressive decline to 80% at saturation density. A bell-shaped curve for expression of the EAC marker on CT45-S cells was seen with maximum expression in the logarithmic phase of the growth cycle. Spent culture medium was examined for the presence of free soluble receptor. Preincubation of E and EAC in appropriate old medium resulted in 42% inhibition of E rosettes and 42% inhibition of EAC rosettes with FL-74 and CT45-S cells, respectively. Thus quantitation of lymphocyte subpopulations as B, T or null cells with these cellular markers may be influenced by the age of the cell examined, phase of the cell cycle and the amount of free receptor present in the surrounding medium.  相似文献   

17.
Vascular leakage contributes to numerous disorders but only a limited number of molecules have been demonstrated to modulate permeability of the vessel wall. The vascular endothelial growth factor (VEGF) is a potent inducer of vascular leakage. Previous studies demonstrated that exogenous administration of placental growth factor (PlGF), a homologue of VEGF, stimulates vascular permeability but the role of endogenous PlGF in plasma extravasation during pathological conditions remains unknown. We recently generated PlGF deficient (PlGF(-/-)) mice and demonstrated that loss of PlGF impaired pathological angiogenesis by attenuating the response to VEGF. Here, we demonstrate that absence of PlGF reduces vascular leakage induced by skin wounding, allergens, and neurogenic inflammation. These findings suggest that inhibition of PlGF might be an attractive tool to reduce vascular leakage in various diseases.  相似文献   

18.
A monoclonal antibody (SB-4) to human C1q was prepared. The equilibrium constant of the antibody for C1q was found to be greater than 10(10) M-1. It has been shown that the antibody binds to the A-B chain dimer, probably via the B chain of C1q. Pepsin digestion of C1q at pH 4.5, which fragments the globular regions but leaves the collagenous region intact, allowed the demonstration that the antigenic site is located in the collagenous region of the molecule. The effect of the antibody on haemolytic activity has shown that it is capable of inhibiting the formation of EAC1 cells from EAC1q cells plus C1r and C1s but is incapable of inhibiting the C1 activity of performed EAC1 cells. This indicates that the binding of the antibody to the collagenous portion of the B chain of C1q probably prevents interaction between C1q and the C1r2-C1s2 complex.  相似文献   

19.
Functional properties of membrane-associated complement receptor CR1   总被引:2,自引:0,他引:2  
It was previously shown that membrane receptors for C3b (CR1) purified from human erythrocytes were powerful inhibitors of the complement cascade and that they encompass the regulatory functions of the serum proteins beta 1H (H) and C4-binding protein (C4bp). In the present report we study the functional properties of membrane-associated CR1. When tonsil lymphocytes, which contain between 30 and 60% of CR1-bearing B cells, are incubated with the red cell complement intermediate EAC14oxy2lim or EAC14oxy23lim, they inhibit both C42 and C423 in a dose-dependent manner. These effects are mediated by membrane-associated molecules. Indeed, mild trypsinization of the lymphocytes abolishes their activity, and formaldehyde-fixed cells are as effective as viable cells. The inhibitory effects are in part mediated by CR1. The lymphocyte activities are reversed about 60% if monoclonal antibodies to CR1 or fluid phase C3b are present in the incubation medium. Moreover, upon addition of C3b-inactivator (l), lymphocytes release C3c fragments from EAC14oxy23b. The release of C3c was also abolished by antibodies to CR1. These results support the idea that CR1, as well as other molecules from the lymphocyte membrane, can function as inhibitor(s) of complement activation in their vicinity.  相似文献   

20.
M Nakamura  S Ohnishi  H Kitamura  S Inai 《Biochemistry》1976,15(22):4838-4843
The structural change in erythrocyte membranes induced by antibody and complement was studied using phospholipid spin-labels. Sheep erythrocytes were labeled with phosphatidylcholine spin-label and various intermediate cells (erythrocyte-antibody complex (EA), EA bound with complement components from C1 to C7 (EAC1-7), EAC1-8, and EAC1-9) were prepared. Electron spin resonance spectra of EA, EAC1-7, and EAC1-8 were very similar to that of the erythrocytes, while that of EAC1-9 was markedly different. The overall splitting value for the lysed EAC1-9 (53 G) was much smaller than that for the erythrocytes (57 G), indicating a marked fluidization around the phosphatidylcholine label. The unlysed EAC1-9 membranes contained a limited fraction of the fluidized area. When EA was reacted with complement in the presence of 36% bovine serum albumin, the membranes were fluidized similarly to the lysed EAC1-9, although the hemolysis was largely blocked. The membranes of unlysed EAC1-9 prepared in isotonic (ethylenedinitrilo)tetraacetic acid were also fluidized, but to somewhat smaller extent. The role of C9 in the modification of erythrocyte membranes was also demonstrated using Mg2+ ghosts, which were prepared by hypotonic hemolysis in the presence of Mg2+. The membranes of Mg2+ ghost of EAC1-7 were markedly fluidized when bound with C8 and C9, but not affected by binding of C8 only. The component C8 was found to give a latent effect on the membranes that caused irreversible fluidization upon osmotic shock. The terminal component thus creates a fluidized area in the erythrocyte membranes through which small ions and molecules may diffuse more easily and the resulting osmotic unbalance may finally cause hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号