首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang Q  Liang C  Zhuang W  Li J  Deng H  Deng Q  Wang B 《Planta》2007,225(2):321-330
Previous research has demonstrated that the thermo-sensitive genic male-sterile (TGMS) gene in rice was regulated by temperature. TGMS rice is important to hybrid rice production because the application of the TGMS system in two-line breeding is cost-effective, simple, efficient and overcomes the limitations of the cytoplasmic male sterility (CMS) system. AnnongS is the first discovered and deeply studied TGMS rice line in China. Previous studies have suggested that AnnongS-1 and Y58S, two derivative TGMS lines of AnnongS, were both controlled by a single recessive gene named tms5, which was genetically mapped on chromosome 2. In the current study, three populations (AnnongS-1 × Nanjing11, Y58S × Q611, and Y58S × Guanghui122) were developed to investigate the tms5 gene molecular map. Analysis of recombination events of sterile samples, utilizing 125 probes covering the tms5 region, suggested that the tms5 gene was physically mapped to a 19 kb DNA fragment between two markers, 4039-1 and 4039-2, located on the BAC clone AP004039. Following the construction of a physical map between the two markers, ONAC023, a member of the NAC (NAM-ATAF-CUC-related) gene family, was identified as the candidate of the tms5 gene.  相似文献   

2.
Introduction of the tms2 gene from Agrobacterium tumefaciens into Arabidopsis thaliana yields transgenic seedlings with a new selectable phenotype: the seedlings are strongly growth inhibited on micromolar concentrations of auxin amide substrates that do not significantly affect wild-type seedlings. The tms2 gene encodes an amidohydrolase that catalyzes the conversion of biologically inactive auxin amides into active auxins, which are toxic to plants at elevated concentrations. In the absence of exogenous substrate, tms2+ transgenic seedlings grow normally and are fertile. When grown on auxin amides, both etiolated and green tms2+ seedlings exhibit a variety of dose-dependent auxin toxicity effects. tms2 mRNA and the encoded amidohydrolase activity are both detectable in transgenic but not in wild-type seedlings, demonstrating that a cognate activity is lacking in wild-type Arabidopsis. Furthermore, when the introduced tms2 gene is fused to the Arabidopsis cab140 promoter, the tms2 RNA and its encoded amidohydrolase activity and, thus, the conditional lethal phenotype can be modulated by phytochrome action. The tms2 gene can, therefore, serve as a regulatable selectable marker in Arabidopsis that should be useful in isolation of trans-regulatory mutants that have lost the imposed regulation of tms2 gene activity.  相似文献   

3.
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression ofchsA gene in transgenicPetunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal ofchsA gene, and transferred the fusion gene intoPetunia hybrida viaAgrobacterium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNAin situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.  相似文献   

4.
Summary We have previously described substantial variation in the level of expression of two linked genes which were introduced into transgenic petunia plants using Agrobacterium tumefaciens. These genes were (i) nopaline synthase (nos) and (ii) a chimeric chlorophyll a/b binding protein/octopine synthase (cab/ocs) gene. In this report we analyze the relationship between the level of expression of the introduced genes and T-DNA structure and copy number in 40 transgenic petunia plants derived from 26 transformed calli. Multiple shoots were regenerated from 8 of these calli and in only 6 cases were multiple regenerated shoots from each callus genotypically identical to each other. Many genotypes showed no nos gene expression (22/28). Most of the plants (16/22) which lacked nos gene expression did contain nos-encoding DNA with the expected restriction enzyme map. Similarly, amongst the genotypes showing no cab/ocs gene expression, the majority (11/28) did not show any alterations in restriction fragments corresponding to the expected cab/ocs coding sequences (10/11). Approximately half of the plants carried multiple copies of T-DNA in inverted repeats about the left or right T-DNA boundaries. No positive correlation was observed between the copy number of the introduced DNA and the level of expression of the introduced genes. However, plants with high copy number complex insertions composed of multiple inverted repeats in linear arrays usually showed low levels of expression of the introduced genes.  相似文献   

5.
The present study describes a novel thermo-sensitive genic male sterile (TGMS) line, Qiong68ms. To analyse the mode of fertility inheritance and tag the TGMS gene, a set of F2, BC1 and F2:3 populations derived from a cross between Qiong68ms and K12 were evaluated for a period of 2 years. Classical genetic analyses and QTL mapping using the mean restoration percentage of the F2:3 populations revealed that the fertility of Qiong68ms was likely to be governed by a single recessive gene, which was named tms3; the tms3 gene was mapped to a location between SSR markers umc2129 and umc1041, at a distance of 3.7 cM form umc2129 and 1.5 cM form umc1041. The molecular markers tightly linked with tms3 gene will aid in the transfer of the TGMS gene to various background inbred lines using the MAS method.  相似文献   

6.
The wild-type gene encoding granule-bound starch synthase (GBSS) is capable of both complementing the amylosefree (amf) potato mutant and inhibiting the endogenous GBSS gene expression in wild-type potato. Co-suppression of the endogenous GBSS gene, easily visualised by staining the starch with iodine, occurred when the full-size GBSS sequence (genomic), GBSS cDNA or even the mutant amf allele were introduced into the wild-type potato. Conversely, introduction of the GBSS promoter sequence alone, did not result in co-suppression in the 80 analysed transformants. Neither the orientation of the GBSS gene with respect to kanamycin resistance nor the presence of an enhancer influenced the frequency of plants showing a co-suppression phenotype. After crossing a partially complemented amf mutant with a homozygous wild-type plant, the F1 offspring segregated into plant phenotypes with normal and decreased expression of the GBSS gene. This decreased expression correlated with the presence of a linked block of five T-DNA inserts which was previously shown to be correlated with partial complementation of the amf mutant. This crossing experiment indicates that co-suppression can cause inhibition of gene expression of both inserted and endogenous wild-type GBSS genes. The frequency of partially complemented amf plants was equal to the frequency of co-suppressed wild types when a construct, with an enhancer in front of the GBSS promoter, was used (pWAM 101E). This might suggest that partial complementation of the amf genotype caused by unstable expression of the transgene can be overcome by inserting an enhancer in front of the GBSS promoter.  相似文献   

7.
Prevention of the flowering of a tree,silver birch   总被引:3,自引:1,他引:2  
Genetic modification of trees presents great advantages but it is hampered by the possible spread of introduced genes to native populations. However, the spread would be prevented if the modified trees would be sterile. We have previously shown that the induction of sterility by the prevention of flowering is possible in tobacco and Arabidopsis by introducing a gene construct composed of the ribonuclease gene BARNASE ligated to the flower-specific promoter of the birch gene BpMADS1. In the present study, we test this gene construct in silver birch (Betula pendula Roth). When this gene construct was introduced into very early-flowering birch clones, 81 kanamycin resistant lines were obtained. In 38 lines, the vegetative development was disturbed, e.g., the leaves were small and the plants were short and bushy or the growth of plants was weak. More importantly, in 7 other lines no male inflorescences formed or they aborted early. If male inflorescences were formed, they did not contain any stamens. The initial growth of these lines was similar to the non-transgenic control lines. Later, however, the growth of the non-flowering lines differed from that of the controls in showing some dichotomic branching and a reduced number of branches. Preliminary results showed that the gene construct can prevent the development of female inflorescences as well. The results show clearly that BpMADS1::BARNASE can prevent the flowering in a tree but the prevention of flowering may cause some side effects. Studies with ordinary birch clones will show whether the side effects are a property of the early flowering clones or all birches.  相似文献   

8.
In this paper we describe the organization and expression of the genes encoding the flavonoid-biosynthetic enzyme dihydroflavonol-4-reductase (DFR) in Petunia hybrida. A nearly full-size DFR cDNA clone (1.5kb), isolated from a corolla-specific cDNA library was compared at the nucleotide level with the pallida gene from Antirrhinum majus and at the amino acid level with enzymes encoded by the pallida gene and the A1 gene from Zea mays.The P. hybrida and A. majus DFR genes transcribed in flowers contain 5 introns, at identical positions; the three introns of the A1 gene from Z. mays coincide with first three introns of the other two species. P. hybrida line V30 harbours three DFR genes (A, B, C) which were mapped by RFLP analysis on three different chromosomes (IV, II and VI respectively).Steady-state levels of DFR mRNA in the line V30 follow the same pattern during development as chalcone synthase (CHS) and chalcone flavanone isomerase (CHI) mRNA. Six mutants that accumulate dihydroflavonols in mature flowers were subjected to Northern blot analysis for the presence of DFR mRNA. Five of these mutants lack detectable levels of DFR mRNA. Four of these five also show drastically reduced levels of activity for the enzyme UDPG: flavonoid-3-O-glucosyltransferase (UFGT), which carries out the next step in flavonoid biosynthesis; these mutants might be considered as containing lesions in regulatory genes, controlling the expression of the structural genes in this part of the flavonoid biosynthetic pathway. Only the an6 mutant shows no detectable DFR mRNA but a wild-type level for UFGT activity. Since both an6 and DFR-A are located on chromosome IV and DFR-A is transcribed in floral tissues, it is postulated that the An6 locus contains the DFR structural gene. The an9 mutant shows a wild-type level of DFR mRNA and a wild-type UFGT activity.  相似文献   

9.
Chalcone synthase A is a key enzyme in the anthocyanin biosynthesis pathway. Expression ofchsA gene in transgenicPetunia hybrida resulted in flower color alterations and co-suppression of transgenes and endogenous genes. We fused the β-glucuronidase (uidA) gene to the C-terminal ofchsA gene, and transferred the fusion gene intoPetunia hybrida viaAgrobacterium tumefaciens. GUS histochemical staining analysis showed that co-suppression occurred specifically during the development of flowers and co-suppression required the mutual interaction of endogenous genes and transgenes. RNAin situ hybridization analysis suggested that co-suppression occurred in the entire plant, and RNA degradation occurred in the cytoplasm.  相似文献   

10.
11.
It has been shown in tobacco and Arabidopsis that transgenes with multiple direct repeats induce RNA silencing at high frequency. In this study, we tried to establish a direct repeat-induced RNA silencing system in maize and evaluate whether it can be developed as a high throughput tool for functional genomics. Our results showed that the construct phC4, which carries four direct repeats of a chloramphenicol acetyl-transferase (CAT) gene, was able to induce silencing of itself with high efficiency in maize. Using a transient expression system, we further demonstrated that construct phC3G with a β-glucuronidase (GUS) gene located downstream of three direct repeats of CAT gene silenced not only itself in maize calli but also an “endogenous” GUS gene, which was stably expressed in maize calli. Most importantly, when constructs with the maize iojap (ij) gene inserted in either sense or antisense orientation into the downstream of four direct repeats of CAT gene were transformed into maize plants, co-suppression of endogenous and transgenic ij genes was detected in majority of transgenic maize plants. Our co-suppression results suggest that with improvements, this new approach has the potential to become an efficient research tool for high throughput functional genomics.  相似文献   

12.
A cDNA clone of the geneLhca2 encoding a photosystem I (PSI) type II chlorophylla/b-binding protein was isolated fromArabidopsis thaliana. The isolation of this, the fourth PSI cab gene fromArabidopsis, confirms a previous report [1] that indicatedArabidopsis may contain all four PSI cab genes identified in other plant species.Lhca2 is a single-copy gene as are the other knownArabidopsis PSI cab genes. The patterns of developmental expression and tissue-specific regulation ofLhca2 are similar to those of other PSI and PSII cab genes, but the light induction pattern and the steady-state mRNA level ofLhca2 are distinct. This suggests that a different mechanism may be employed to regulate the expression ofLhca2.  相似文献   

13.
Summary Several mutations which affect critical cell functions in Escherichia coli map at 76 min on the chromosome. The genes which map in this region are the cell division genes ftsY, E, X and S, the heat shock regulatory gene rpoH/htpR/hin, the lipoprotein biogenesis gene fam and another essential gene dnaM. We determined the relative positions of most of these genes and show that the rpoH gene lies immediately downstream of the last gene (ftsX) of a cell division operon and is transcribed in the same direction. We also show that the fam-715 mutation is allelic with rpoH and so the conditional lipoprotein deficiency of the fam mutation must be due to the pleiotropic nature of the heat shock response.  相似文献   

14.
AnnongS-1, a thermo-sensitive genic male-sterile (TGMS) rice line, has a new TGMS gene. Genetic analysis indicated that the sterility of AnnongS-1 was controlled by a single resessive gene named tms5. In our previous studies based on an F2 population from the cross between AnnongS-1 and Nanjing11, tms5 was mapped on chromosome 2. Recently, a RIL (recombinant inbred line) population from the same cross was developed and used for the fine mapping of the tms5 gene. Molecular marker techniques combined with BSA (bulked segregant analysis) were used. As a result, two AFLP markers (AF10, AF8), one RAPD marker (RA4), one STS marker (C365-1), one CAPs marker (G227-1) and four SSR markers (RM279, RM492, RM327, RM324) were found to be closely linked to tms5 gene. The DNA sequences of the RFLP marker of C365 and G227 were found in GenBank, and on the basis of these sequences, many primers were designed to amplify the two parents and their RIL population plants. Finally, the tms5 gene was mapped between STS marker C365-1 and CAPs marker G227-1 at a distance of 1.04 cM from C365-1 and 2.08 cM from G227-1.Communicated by H.F. LinskensY.G. Wang and Q.H. Xing contributed equally to this contribution.  相似文献   

15.
Rice is one of the most important food crops. The temperature-sensitive genic male sterility (TGMS) system provides a great potential for improving food production by hybrids. The use of TGMS system is simple, inexpensive, effective, and eliminates the limitations of the conventional three-line system. A rice gene, tms2, generated by irradiation of a japonica variety has been reported to control TGMS in several rice lines. Previous studies reported genetic markers linked to this gene, and the gene was transferred to an aromatic Thai cultivar. Using information obtained from published databases, we located positions of the reported genetic markers flanking the gene in rice genomic sequences, and developed gene-based markers located inside the flanking markers for polymorphism detection. We found that inbred indica tms2 mutant plants contain about 1 Mb of japonica DNA, in which at least 70 kb was deleted. Using RT-PCR for expression analysis, four genes out of seven genes annotated as expressed proteins located inside the deletion showed expression in panicles. These genes could be responsible for TGMS phenotypes of tms2. In addition, we developed gene-based markers flanking and inside the deletion for selecting the tms2 gene in breeding populations. By genotyping 102 diverse rice lines including 38 Thai rice lines, 5 species of wild rice, and 59 exotic rice lines including TGMS lines and cultivars with desirable traits, a gene-based marker located inside the deletion and one flanking marker were shown to be highly specific for the tms2 mutant.  相似文献   

16.
17.
18.
19.
For Matthiola incana (Brassicaceae), used as a model system to study biochemical and genetical aspects of anthocyanin biosynthesis, several nearly isogenic colored wild type lines and white-flowering mutant lines are available, each with a specific defect in the genes responsible for anthocyanin production (genes e, f, and g). For gene f supposed to code for chalcone synthase (CHS; EC 2.3.1.74), the key enzyme of the flavonoid/anthocyanin biosynthesis pathway belonging to the group of type III polyketide synthases (PKS), the wild type genomic sequence of M. incana line 04 was determined in comparison to the white-flowering CHS mutant line 18. The type of mutation in the chs gene was characterized as a single nucleotide substitution in a triplet AGG coding for an evolutionary conserved arginine into AGT coding for serine (R72S). Northern blots and RT-PCR demonstrated that the mutated gene is expressed in flower petals. Heterologous expression of the wild type and mutated CHS cDNA in E. Scherichia coli, verified by Western blotting and enzyme assays with various starter molecules, revealed that the mutant protein had no detectable activity, indicating that the strictly conserved arginine residue is essential for the enzymatic reaction. This mutation, which previously was not detected by mutagenic screening, is discussed in the light of structural and functional information on alfalfa CHS and related type III PKS enzymes.  相似文献   

20.
Using a high-efficiency DNA cloning vector pJ1–8, a DNA repair geneuvr1 has been self-cloned in bacteriumHaemophilus influenzae. Chimeric plasmid pKuvrl, carrying wild type allele ofuvr1 gene and flanking DNA sequences, specifically complements auvr1 gene mutation in the bacterial chromosome. Auvr1} mutation could be transferred from chromosome byin vivo recombination to pKuvr1 and isolated and designated as plasmid pKuvrl. Plasmid pKuvrl carries a 11.3 kb chromosomal DNA insert which was scanned for the presence of any other DNA repair genes by a novel method of directed mutagenesis. Preliminary analysis of the 3 new mutants isolated by this method supports the notion that the insert contains more than one gene concerned with ultraviolet radiation-sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号