首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lactose-binding lectin from Bothrops jararacussu venom (BJcuL) is a homodimer belonging to group VII of the c-type animal lectins. BJcuL has also been shown to serve as an interesting tool for combating tumor progression by inhibiting cancer and endothelial cell growth. However, detailed structural studies of BJcuL and its biological mechanisms of cytotoxicity are yet to be reported, perhaps because of the non-availability of recombinant proteins in necessary quantities. Intending to increase the present information about structural and consequently the understating of biological studies, the cDNA coding for BJcuL from a venom gland has been cloned and sequenced. The mature protein-coding region was amplified by PCR with specific oligonucleotides, and subcloned into the pET-15b vector to express the recombinant BJcuL in Escherichia coli BL21 (DE3). The deduced amino acid sequence exhibits a high degree of sequence identity with c-type lectins (CTLs) and c-type lectin-like domains (CTLDs). An insoluble and inactive 18.5-kDa protein was overexpressed after 1.0mM IPTG induction. The recombinant BJcuL was recovered and denatured in a buffer with 6M urea and purified on a nickel-affinity column. Protein refolding was carried out on this column, during procedure purification, followed by dialysis against CTBS and then by gel filtration for separation of the active dimmer. The refolding process of rBJcuL and the analysis of its structure were confirmed by biological assay, circular dichroism, and MALDI-TOF.  相似文献   

2.
3.
Galactoside-binding lectin was purified from the snake venom of Crotalus ruber by affinity chromatography on a lactose-agarose column, and the complete amino acid sequence was determined. The C. ruber venom lectin (CRL) showed a single band of 28 kDa by SDS-polyacrylamide electrophoresis under non-reducing conditions, but it showed a single band of 15 kDa under reducing conditions, indicating that CRL is a disulfide-linked homodimer of 15 kDa subunit. CRL specifically recognized beta-galactosides such as thiodigalactoside followed by N-acetylgalactosamine when examined with their inhibitory effects on CRL-induced hemagglutination. A CRL subunit was composed of 135 residues containing nine Cys residues and showed a high similarity to other C-type galactoside-binding lectins from snake venoms. C. atrox lectin (CAL) showed almost the same sequence except for eight amino acid residues. Neither CRL nor CAL induced platelet aggregation by itself or inhibited platelet aggregation mediated by von Willebrand factor or fibrinogen with agonists. CRL showed a similar oligomeric form and the sugar specificity as CAL, but it showed different divalent cation sensitivity such as Mn(2+) and Ni(2+). Homology modeling suggested that the amino acid substitution found in CRL does not affect sugar recognition of the lectin but might alter the conformation and influence the sugar binding pocket induced by the metal-ion binding.  相似文献   

4.
The sequence coding for a snake venom phospholipase A2 (PLA2), BJUPLA2, has been cloned from a Bothrops jararacussu venom gland cDNA library. The cDNA sequence predicts a precursor containing a 16-residue signal peptide followed by a molecule of 122 amino acid residues with a strong sequence similarity to group II snake venom PLA2's. A striking feature of the cDNA is the high sequence conservation of the 5 and 3 untranslated regions in cDNAs coding for PLA2's from a number of viper species. The greatest sequence variation was observed between the regions coding for the mature proteins, with most substitutions occurring in nonsynonymous sites. The phylogenetic tree constructed by alignment of the amino acid sequence of BJUPLA2 with group II PLA2's in general groups them according to current taxonomical divisions and/or functional activity. It also suggests that gene duplications may have occurred at a number of different points during the evolution of snake venom group II PLA2's.The nucleotide sequence reported in this paper has been submitted to the GenBank/EMBL Data Bank with accession number X76289.Correspondence to: A.M. Moura-da-Silva  相似文献   

5.
We determined the complete amino acid sequence of RVV-X, the blood coagulation factor X activating enzyme, isolated from Russell's viper venom and studied structure-function relationships. RVV-X (M(r) 79,000) consists of a disulfide-bonded two-chain glycoprotein with a heavy chain of M(r) 59,000 and a light chain of heterogeneous M(r) 18,000 (LC1) and 21,000 (LC2). These chains were separated after reduction and S-pyridylethylation, and the isolated major component LC1 was used for sequence analysis. The heavy chain consists of 427 residues containing four asparagine-linked oligosaccharides, and its entire sequence was similar to that of the high molecular mass hemorrhagic protein, HR1B, isolated from the venom of Trimere-surus flavoviridis. The heavy chain contains three distinct domains, metalloproteinase, disintegrin (platelet aggregation inhibitor)-like and unknown cysteine-rich domains. On the other hand, light chain LC1 consists of 123 amino acid residues containing one asparagine-linked oligosaccharide and shows sequence homology similar to that found in the so-called C-type (Ca(2+)-dependent) lectins. Therefore, RVV-X is a novel metalloproteinase containing a mosaic structure with distintegrin-like, cysteine-rich, and C-type lectin-like domains. RVV-X potently inhibits collagen- and ADP-stimulated platelet aggregations, probably via its distintegrin-like domain, although this domain does not contain the Arg-Gly-Asp sequence which is conserved in various venom distintegrins and which is thought to be one of the interaction sites for platelet integrins. Our findings also indicate that snake venom factor IX/factor X-binding protein with a C-type lectin structure (Atoda, H., Hyuga, M., and Morita, T. (1991) J. Biol. Chem. 266, 14903-14911) inhibits RVV-X-catalyzed factor X activation; hence, the light chain of RVV-X probably participates in recognizing some portion of the zymogen factor X.  相似文献   

6.
A cDNA library derived from the Malayan-pit-viper (Calloselasma rhodostoma) venom gland was constructed in the phagemid vector. Using the information of the N-terminal amino acid sequences of two subunits of aggretin, synthetic mixed-base oligonucleotides were employed as a screening probe for colony hybridization. Separate cDNA clones encoding for the alpha and beta chains of aggretin were isolated and sequenced. The results revealed that mature alpha and beta chains contain 136 and 123 amino acid residues, respectively. Aggretin subunits show high degrees of identity with respective subunits (50-60% for alpha, 49-58% for beta) of C-type lectin-like snake venoms. The identity to rattlesnake lectin is relatively lower (i.e., 39 and 30%). All cysteine residues in each chain of aggretin are well conserved and located at the positions corresponding to those of C-type lectins. Thus, three intracatenary disulfide bridges and an interchain disulfide bond between Cys83(alpha) and Cys75(beta) may be allocated. This is the first report regarding the entire sequence of venom GPIa/IIa agonist. According to the alignment of amino acid sequences, hypervariable regions among these C-type lectin-like proteins were revealed. These hypervariable regions are proposed to be the counterparts directly interacting with different receptors or different domains of a receptor on the surface of platelet.  相似文献   

7.
Maackia amurensis haemagglutinin (MAH) is a leguminous lectin which preferentially binds to a cluster of sialylatedO-linked carbohydrate chains (Konami Y, Yamamoto K, Osawa T, Irimura T (1994)FEBS Lett 342:334–38). In the present study a 950 bp cDNA clone encoding MAH was isolated from a cDNA library constructed from germinatedMaackia amurensis seeds. From the nucleotide sequence, MAH was predicted to consist of 285 amino acid residues containing a signal peptide of 29 amino acids. The results also confirmed our previous findings from the amino acid sequence analysis, which indicated that two highly conserved amino acid residues in all other well-known leguminous lectins were replaced in MAH. These residues were lysine-105 and aspartic acid-135. The corresponding amino acid residues in other leguminous lectins were glycine and asparagine, respectively. These differences were due to the presence of nucleotides AAA and GAT in place of AAT/C and GGA/T.Abbreviations MAH Maackia amurensis haemagglutinin.  相似文献   

8.
Lectins are carbohydrate-binding molecules that mediate a variety of biological processes. In this work, we identify and characterize a lectin from Bothrops insularis venom, with respect to its biochemical properties and theoretical structure. Initially, from a venom gland cDNA library, we cloned and sequenced a cDNA encoding a protein with high identity to snake venom lectins. A lectin molecule was purified to homogeneity from the venom by affinity column and gel filtration. This protein named BiL displayed hemagglutinating activity that was inhibited by galactose, lactose, and EDTA. Mass spectrometry analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that BiL is a disulfide-linked dimeric protein consisting of monomers with 16,206 m/z. The amino acid sequence, deduced from its cDNA sequence, was confirmed by Edman sequencing and by peptide mass fingerprint analysis. BiL shows similarity to other C-type lectin family members. Modeling studies provide insights into BiL dimeric structure and its structural determinants for carbohydrate and calcium binding.  相似文献   

9.
A galactose-binding lectin from the venom of the snake Trimeresurus stejnegeri consists of isolated carbohydrate recognition domains, belonging to group VII of the C-type animal lectins. As a first step toward determining the tertiary structure of the galactose-specific lectin, we produced the lectin in Escherichia coli. By in vitro refolding and affinity chromatography, modest amounts (8 mg/liter) of active recombinant proteins were obtained. The recombinant protein was homogeneous, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry. Its amino acid sequence without the initiated methionine at the N-terminus was also characterized by mass spectrometry. The data of hemagglutination and enzyme-linked lectin binding assays demonstrated that the recombinant lectin showed similar sugar-binding activity as the native protein. In addition, fluorescence spectroscopy and circular dichroism also showed obviously their structural similarity.  相似文献   

10.
C-type lectins play important roles in the non-self innate immune system of invertebrates. In this study, we isolated the full-length cDNA of the C-type lectin like-domain (CTLD)-containing protein, designated PtLP, from the hepatopancreas of the swimming crab Portunus trituberculatus, one of the most common edible crabs of East Asia. The PtLP cDNA consists of 923bp and encodes a polypeptide of 164 amino acids containing a well-conserved C-type lectin like-domain (CTLD). The deduced amino acid sequence of PtLP shows 29-36% amino acid sequence identity to other crustacean C-type lectin sequences. A phylogenetic analysis revealed that PtLP is in a large cluster together with black tiger shrimp PmAV, a gene involved in virus resistance of shrimp, and all of the C-type lectins from the various shrimps. Quantitative RT-PCR analysis showed that the PtLP mRNA was expressed highly in hepatopancreas and moderately in gills, hemocytes, and ovary of normal swimming crabs.  相似文献   

11.
Snake venom lectins have been studied in regard to their chemical structure and biological functions. However, little is known about lectins isolated from Bothrops atrox snake venom. We report here the isolation and partial functional and biochemical characterization of an acidic glycan-binding protein called galatrox from this venom. This lectin was purified by affinity chromatography using a lactosyl-sepharose column, and its homogeneity and molecular mass were evaluated by high-performance liquid chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The purified galatrox was homogeneous and characterized as an acidic protein (pI 5.2) with a monomeric and dimeric molecular mass of 16.2 and 32.5 kDa, respectively. Alignment of N-terminal and internal amino acid sequences of galatrox indicated that this protein exhibits high homology to other C-type snake venom lectins. Galatrox showed optimal hemagglutinating activity at a concentration of 100 μg/ml and this effect was drastically inhibited by lactose, ethylenediaminetetraacetic acid, and heating, which confirmed galatrox's lectin activity. While galatrox failed to induce the same level of paw edema or mast cell degranulation as B. atrox crude venom, galatrox did alter cellular viability, which suggested that galatrox might contribute to venom toxicity by directly inducing cell death.  相似文献   

12.
Vipera lebetina venom contains different metallo- and serine proteinases that affect coagulation and fibrin(ogen)olysis. A novel serine proteinase from V. Lebetina venom having ChymoTrypsin Like Proteolytic activity (VLCTLP) was purified to homogeneity from the venom using Sephadex G-100sf, DEAE-cellulose, heparin-agarose and FPLC on Superdex 75 chromatographies. VLCTLP is a glycosylated serine proteinase with a molecular mass of 41926 Da. It reacts with N-acetyl-l-tyrosine ethyl ester (ATEE) but not with Suc-Ala-Ala-Pro-Phe-pNA or Suc-Ala-Ala-Pro-Leu-pNA. The complete amino acid sequence of the VLCTLP is deduced from the nucleotide sequence of the cDNA encoding this protein. The full-length cDNA sequence of the VLCTLP encodes open reading frame of 257 amino acid residues that includes a putative signal peptide of 18 amino acids, a proposed activation peptide of six amino acid residues and serine proteinase of 233 amino acid residues. VLCTLP belongs to the S1 (chymotrypsin) subfamily of proteases. The multiple alignment of its deduced amino acid sequence showed structural similarity with other serine proteases from snake venoms. The protease weakly hydrolyses azocasein, Aα-chain and more slowly Bβ-chain of fibrinogen. VLCTLP does not cleave fibrin and has no gelatinolytic activity. Specificity studies against peptide substrates (angiotensin I and II, oxidized insulin B-chain, glucagon, fibrinogen fragments etc.) showed that VLCTLP catalysed the cleavage of peptide bonds after tyrosine residues. VLCTLP is the only purified and characterized serine proteinase from snake venoms that catalyses ATEE hydrolysis. We detected ATEE-hydrolysing activities also in 9 different Viperidae and Crotalidae venoms.  相似文献   

13.
Coagulation factor IX-binding protein (IX-bp) isolated from the venom of the habu snake (Trimeresurus flavoviridis) is a disulfide-linked heterodimer consisting of homologous subunits A and B. The structure of IX-bp has been solved by X-ray crystallography at 2.6 A resolution to a crystallographic R -value of 0.181. The main-chain fold of each subunit is homologous to the carbohydrate-recognition domain of C-type lectins (C-type CRDs) except for the extended central loop. The structure is almost identical with that of factors IX and X-binding protein (IX/X-bp) as expected from the high level of amino acid sequence homology. The functional difference in ligand recognition from IX/X-bp must reside in the amino acid differences. A continuity of different amino acid residues located from the C-terminal of the second alpha-helix to the following loop forms the local conformational difference in this region between the two proteins. This loop participates in the formation of the concave surface between the two subunits, the putative binding site for the Gla-domain (gamma-carboxyglutamic acid-containing domain) of the coagulation factors. Another difference between the two proteins is in the relative disposition of subunits A and B. When the B subunits are superimposed, about a 6 degrees rotation is required for the superposition of the A subunits. A calcium ion links the second alpha-helix region to the C-terminal tail in each subunit and helps to stabilize the structure for Gla-domain binding. The interface created by the central loop swapping in the dimer IX-bp is almost identical with that seen within the monomeric C-type CRDs. This dimer forms as the result of the amino acid deletion in the linker region of the central loop of the original C-type lectins. Such a dimerization disrupts the lectin active site and creates a Gla-domain binding site, imparting functional diversity.  相似文献   

14.
Two novel postsynaptic neurotoxins (-neurotoxins) isolated and purified from the Taiwan cobra venom (Naja naja atra) possess distinct primary sequences and different neurotoxicities as compared with the most abundant and lethal component in the venom, i.e., cobrotoxin characterized before from the same venom. The complete sequences of two neurotoxin analogues were determined by N-terminal Edman degradation and comparison of amino acid compositions of proteolytic toxin fragments with other homologous toxins of known sequences. The short-chain neurotoxin consists of 61 amino acid residues with eight conserved cysteine residues and is found to show 78% sequence identity with cobrotoxin. The other toxin, consisting of 65 residues with ten cysteines, belongs to the family of long-chain neurotoxins. It is the first long-chain -neurotoxin reported from the Taiwan cobra. The lethal toxicities of these two novel neurotoxins were much lower than cobrotoxin, albeit with close structural homology among the three toxins in terms of their primary sequences and tertiary structure predicted by homology modeling. Multiple sequence alignment and comparison coupled with construction of a phylogenetic tree for various -neurotoxins of Naja and closely related genuses have established that all nicotinic -neurotoxins present in the snake family of Elapidae are closely related to each other, presumably derived from an ancestral polypeptide by gene duplication and subsequent multiple mutational substitutions.  相似文献   

15.
C-type lectins are Ca(2+)-dependent carbohydrate-recognition proteins that play crucial roles in innate immunity. The cDNA of C-type lectin (AiCTL1) in the bay scallop Argopecten irradians was cloned by expressed sequence tag (EST) and RACE techniques. The full-length cDNA of AiCTL1 was 660 bp, consisting of a 5'-terminal untranslated region (UTR) of 30 bp and a 3' UTR of 132 bp with a polyadenylation signal sequence AATAAA and a poly(A) tail. The AiCTL1 cDNA encoded a polypeptide of 166 amino acids with a putative signal peptide of 20 amino acid residues and a mature protein of 146 amino acids. The deduced amino acid sequence of AiCTL1 was highly similar to those of the C-type lectins from other animals and contained a typical carbohydrate-recognition domain (CRD) of 121 residues, which has four conserved disulfide-bonded cysteine residues that define the CRD and two additional cysteine residues at the amino terminus. AiCTL1 mRNA was dominantly expressed in the hemocytes of the bay scallop. The temporal expression of AiCTL1 mRNA in hemocytes was increased by 5.7- and 4.9-fold at 6h after injury and 8h after injection of bacteria, respectively. The structural features, high similarity and expression pattern of AiCTL1 indicate that the gene may be involved in injury healing and the immune response in A. irradians.  相似文献   

16.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

17.
Affinity chromatography based on the commercial resin Sepharose CL-6B was used to isolate new C1-beta-type lectins from crude preparations of snake venoms (Bothrops jararaca, Bothrops jararacussu, Bothrops newiedi, Bothrops moojeni, Lachesis muta rhombeata). Most of the C-type lectins could be eluted with almost 100% recovery using the competitor isopropyl-beta-D-thiogalactoside (IPTG) or through Ca2+ sequestration with EDTA. The lectin yield varied considerably among the different snake species, but B. newiedi venom was a particularly rich source of lectin, retaining 2.7 mg of lectin by milliliter of resin in saturating conditions. C1-alpha-lectins from Crotalus durisus terrificus venom, from the jack fruit (jacalin) and from bread fruit seeds extract (frutalin) had no affinity, either with or without Ca2+ added, for Sepharose CL-6B, showing that the resin is specific for C1-beta-type lectins. Sepharose CL-6B used as galactose-affinity chromatography provides a simple and fast method for isolating C-type beta-galactoside binding lectins from crude sample preparations.  相似文献   

18.
The complete primary structure of a galactose-specific lectin contained in the venom of the rattlesnake, Crotalus atrox, was determined. The lectin is composed of two covalently linked, identical subunits, each consisting of 135 amino acid residues. Under physiological conditions the lectin proved to be highly aggregated. The venom lectin contained 9 half-cystines, 8 of which formed four intrasubunit disulfide bridges (Cys3-Cys14, Cys31-Cys131, Cys38-Cys133, and Cys106-Cys123), while Cys86 was involved in an intersubunit disulfide bridge. Because of the high content of disulfide bridges, the intact lectin was extremely resistant to tryptic digestion. The determined amino acid sequence was found to be homologous with those of the so-called carbohydrate recognition domains of Ca2(+)-dependent-type lectins in animal. Among them, 8 amino acid residues (Cys31, Gly69, Trp92, Pro97, Cys106, Asp120, Cys123, and Cys131) were completely conserved. Leu40, Trp67, and Trp81 were also well conserved. The rattlesnake venom lectin showed high hemagglutinating activity. These results, together with the occurrence of similar lectins in crotalid venoms, suggest that these lectins have evolved in order to make the venom a more effective weapon to capture prey animals.  相似文献   

19.
In this work, we characterized chemically the N-acetyl-D-galactosamine specific lectin from Amaranthus leucocarpus syn hypocondriacus lectin (ALL). It is a dimeric glycoprotein composed by three isoforms with pl at 4.8, 4.9, and 5.2. Circular dichroism analysis indicated that the secondary structure of ALL contains 45% of -sheet and 5% of -helix. Amino acid sequence of the purified lectin and its isoforms was determined from peptides obtained after trypsin digestion by MALDI-TOF (Matrix assisted laser desorption ionization-time of flight). The tryptic peptides prepared from the purified lectin and the three isoforms showed different degrees (80 to 83%) of identity with the amino acid sequence belonging to a previously described high nutritional value protein from A. hypocondriacus not shown at the time to be a lectin. Furthermore, analysis of tryptic peptides obtained from ALL previously treated with peptide N-glycosidase, revealed a 93% identity with the aforementioned protein. Presence of N-glycosidically linked glycans of the oligomannosidic type and, in minor proportion, of the N-acetyllactosaminic type glycans was determined by affinity chromatography on immobilized Con A.  相似文献   

20.
Two lectins have been isolated: one from the venom of Lachesis muta (bushmaster lectin) and one from Dendroaspis jamesonii venom (Jameson's mamba lectin). The lectin from bushmaster venom (BML) is similar to the lactose-binding lectins previously isolated from snake venoms (Gartner et al. (1980) FEBS Lett. 117, 13-16; Gartner & Ogilvie (1984) Biochem. J. 224, 301-307) in that it is calcium-dependent, lactose inhibitable, and is a dimer of molecular weight 28,000. In contrast, the lactose-blockable lectin from Jameson's mamba venom (JML) has an apparent molecular weight of 26,000 and agglutinates erythrocytes in the presence of EDTA. The absorption spectra of BML were affected by the binding of calcium, or calcium and lactose to the lectin. However, JML spectra were not affected by these conditions. While the hemagglutination activity of each of the previously described lactose-binding snake venom lectins is inhibited by reducing agent, the activities of BML and JML are not affected by reducing agent. Antiserum against bushmaster lectin cross-reacts with thrombolectin, cottonmouth lectin (CML), rattlesnake lectin (RSL), and copperhead lectin (CuHL) but not lectin from Jameson's mamba venom. This evidence plus a comparison of atomic absorption spectra, isoelectric points and amino acid analyses of the lectins demonstrate that JML and BML are different from thrombolectin, CML, RSL, and CuHL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号