首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heparin inhibits (I50 = 2 μg/ml) the activity of luteinizing hormone and human chorionic gonadotropin-stimulated adenylate cyclase in purified rat ovarian plasma membranes. Unstimulated enzyme activity and activity stimulated by NaF, GTP or guanosine 5′-(β,γ-imido)triphosphate were inhibited to a lesser extent. Human chorionic gonadotropin binding to this membrane preparation was inhibited by hepatin (I50 = 6 μg/ml). The inhibition with respect to hormone concentration was of a mixed type for hormone binding and adenylate cyclase stimulation. Inhibition by heparin was not eliminated at saturating hormone concentration. The degree of inhibition was unaffected by the order in which enzyme, hormone and heparin were introduced into the assay system. Herapin (3 μg/ml) did not affect the pH activity relationship of basal and hormone-stimulated adenylate cyclase activity and did not change the dependence of enzyme activity on magnesium ion concentration. The inhibitory action of heparin cannot be solely attributed to interference with either catalysis or hormone binding. The possibility is considered that the highly charged herapin molecule interferes with enzyme receptor coupling, by restricting the mobility of these components or by effecting their conformation.  相似文献   

2.
Heparin was found to be the most potent inhibitor of rat ovarian luteinizing hormone-sensitive adenylate cyclase (I50 = 2 μg/ml) when compared to other naturally occurring glycosaminoglycans. This inhinibition was also appparent when this enzyme was stimulated by follicle-stimulating hormone or prostaglandin E 2. Heparin was also found to inhibit glucagon-sensitive rat hepatice adenylate cyclase, and the prostaglandin E1-sensitive enzyme from rat ileum and human platelets. In contrast, heparin stimulated the dopamine sensitive adenylate cyclase from rat caudate nucleus. The sulfade polysugar dextran sulfate exerts similar effects on adenylate cyclase activity of the rat ovary was shown to inhibit hormone binding to rat ovarian plasma membrane in a manner similar to that exerted by heparin. In contrast to heparin, dextran sulfate inhibited dopamine-sensitive adenylate cyclase from rat caudate nucleus.  相似文献   

3.
Heparin was found to be the most potent inhibitor of rat ovarian luteinizing hormone-sensitive adenylate cyclase (I50 = 2 microgram/ml) when compared to other naturally occurring glycosamin oglycans. This inhibition was also apparent when this enzyme was stimulated by follicle-stimulating hormone or prostaglandin E2. Heparin was also found to inhibit glucagon-sensitive rat hepatic adenylate cyclase, and the prostaglandin E1-sensitive enzyme from rat ileum and human platelets. In contrast, heparin stimulated the dopamine sensitive adenylate cyclase from rat caudate nucleus. The sulfated polysugar dextran sulfate exerts similar effects on adenylate cyclase activity of the rat ovary and was shown to inhibit hormone binding to rat ovarian plasma membrane in a manner similar to that exerted by heparin. In contrast to heparin, dextran sulfate inhibited dopamine-sensitive adenylate cyclase from rat caudate nucleus.  相似文献   

4.
Follicular fluid obtained from medium or large bovine ovarian follicles inhibited ovarian luteinizing hormone/human chorionic gonadotropin sensitive adenylate cyclase in a dose-dependent manner (I50 = 3 mg follicular fluid protein/ml). The inhibitory activity was excluded by Sephadex G-10 and was fully retained following treatment with charcoal. Fluoride-stimulated enzyme activity was not inhibited. Binding of 125I human chorionic gonadotropin to ovarian plasma membranes was only slightly reduced by the follicular fluid. The post-microsomal supernatant of homogenates from ovaries of immature (27-day-old) rats collected 24–36 h after treatment with 15 i.u. of pregnant mare serum gonadotropin also inhibited luteinizing hormone-sensitive adenylate cyclase. The extent of this inhibition seemed to decline with follicular maturation. The possibility is raised that ovarian sulfated glycosaminoglycans are responsible for the observed inhibition of adenylate cyclase.  相似文献   

5.
Heparin inhibited the adenylate cyclase activity of semipurified rat pancreatic plasma membranes stimulated by hormones and by Gpp(NH)p but not by fluoride or when in the persistently active state. When observed, the inhibition was rapid and sustained. It was of a noncompetitive type and never exceeded 20% for secretin. The inhibition of Gpp(NH)p-stimulated activity was more pronounced (48% inhibition at a heparin concentration of 50 μg/ml). For the C-terminal octapeptide of pancreozymin (CCK-8)-stimulated adenylate cyclase, the inhibition amounted to 93% at 50 μg/ml. This inhibition was competitive at low heparin concentration and of a mixed type above 10 μg/ml. Besides, heparin inhibited (I50 = 6 μg/ml) the binding of peptides of the CCK family to their specific receptors without affecting the apparent Kd value of binding. Taken together, these relatively specific effects of heparin gave evidence in favor of the existence of CCK spare receptors. Dextran sulfate was more potent than heparin as an inhibitor of adenylate cyclase activation while chondroitin-4-sulfate and chondroitin-6-sulfate were ineffective. Dansylated pancreatic plasma membranes exhibited characteristics of adenylate cyclase activation by CCK-8 which were similar to those found for untreated membranes exposed to heparin.  相似文献   

6.
Summary n-Alkanols (from methanol to decanol) have a biphasic effect on rat cardiac adenylate cyclase either basal or stimulated by GTP, GppNHp, NaF or hormones (isoproterenol, glucagon, secretin) in the presence of GTP. At high concentration, all the enzyme activities are inhibited. At low concentration, adenylate cyclase activity is either unchanged or potentiated depending on both the stimulus and the alkanols involved. Potentiation is due to an increase of maximum velocity with no change in the activation constant of the enzyme. Basal activity is unchanged as well as the isoproterenol-and glucagon-stimulated enzyme. The secretin-stimulated enzyme is potentiated. It is the guanyl nucleotide regulatory protein-mediated stimulation of adenylate cyclase which is mainly affected. An attempt was made to relate these effects on adenylate cyclase with physical parameters of the alkanols (partition coefficient). From the data obtained as a function of the alkanol chain-length and of temperature on the adenylate cyclase stimulated by GTP, GppNHp, NaF and permanently activated, it is concluded that the increase in efficacy observed in the presence of alkanol is due to an interaction with the protein moeity particularly with the guanyl nucleotide regulatory protein.  相似文献   

7.
The diterpene forskolin stimulated rat cardiac adenylate cyclase activity at least 20-fold and potentiated the effect of NaF. The stimulatory effect of forskolin was reduced in the presence of Gpp(NH)p. Ethanol markedly reduced the stimulation of adenylate cyclase by forskolin while potentiating NaF and Gpp(NH)p stimulation. The inhibitory effect of ethanol on forskolin stimulation appeared to be of a mixed type with both a competitive and a non-competitive component. Three other short-chain linear alcohols (methanol, propanol, butanol) also inhibited forskolin-stimulation, this effect being proportional to the number of carbon atoms.  相似文献   

8.
9.
The effects of ribo- and deoxyribonucleic acids on the activity of detergent-dispersed adenylate cyclases from rat and bovine brain were examined. Mn2+ (10 mM)-activated adenylate cyclase was inhibited by micromolar concentrations of poly(A) (IC50 congruent to 0.45 microM). This inhibition was directly due to poly(A) and was not mediated by: (a) protein contamination of the poly(A) preparation, (b) metal chelation, (c) formation of an acid-soluble inhibitor of adenylate cyclase, (d) effects on the specific activity of [alpha-32P]ATP, (e) competition with MnATP for binding to adenylate cyclase, or (f) diversion of substrate to an alternate polymerase reaction. Inhibition of adenylate cyclase by poly(A) was on the enzyme's catalytic unit, as purified preparations of the enzyme from bovine brain were inhibited by poly(A). This inhibition by poly(A) was not likely mediated via the enzyme's "P"-site, through which activated forms of the enzyme are selectively inhibited by specific adenosine phosphates. In contrast with inhibition by the "P"-site agonist 3' AMP, inhibition of adenylate cyclase by poly(A) was slow in onset and was not reversible by dilution and showed a different metal-dependence. Inhibition of adenylate cyclase was relatively specific for poly(A) as poly(U) caused less than 50% inhibition and deoxyribonucleic acids had no effect. The potency and specificity of the inhibition of adenylate cyclase by poly(A) imply a biochemically interesting interaction that is possibly also of physiological significance.  相似文献   

10.
Oviduct adenylate cyclase activity of the quail was measured by radiochemical analysis following different hormonal treatments. A single injection of estradiol benzoate (EB) to immature female quails resulted in a prereplicative surge of adenylate cyclase activity. A second surge of enzyme activity was observed during the proliferative phase induced by EB. Estradiol-17 alpha, estrone, estriol and testosterone were ineffective. Tamoxifen completely inhibits the growth-promoting effect of EB and the second surge of adenylate cyclase activity but does not inhibit the prereplicative increase of enzyme activity. This prereplicative increase of adenylate cyclase activity was also observed, even in the absence of increased plasma estradiol, when estradiol-17 beta (E2) was perfused through the hepatic portal vein. Moreover, E2 had no effect on enzyme activity when added directly to the oviduct homogenate preparation, at concentrations ranging from 10(-9) to 10(-7) M. In response to progesterone injection, oviduct adenylate cyclase activity followed a different pattern, beginning its increase after 3 h and remaining elevated up to 24 h. The activation by estradiol was independent of the presence of guanylylimidodiphosphate. Moreover, the enzyme was more sensitive to forskolin at submaximal concentration in estradiol treated birds than in control. These results demonstrate that transient activation of adenylate cyclase at the early stages of the action of estradiol does not occur through the classic nuclear receptor-gene activation pathway or a membrane receptor mediated process, but involves an indirect pathway, yet to be defined.  相似文献   

11.
(-)-Norepinephrine and other catecholamines inhibit basal and prostaglandin E1-stimulated adenylate cyclase activities by 35 to 60% in homogenates of NG108-15 neuroblastoma x gloma hybrid cells and markedly reduce adenosine 3'35:'-monophosphate levels of intact cells, but do not affect guanosine 3':5'-monophosphate levels. The specificity of the NG108-15 receptor for ligands is that of an alpha receptor, possibly a presynaptic alpha 2 receptor. The inhibition of adenylate cyclase by norepinephrine is reversed by alpha receptor antagonists such as dihydroergotamine or phentolamine, but not by the beta receptor antagonist propranolol. The effect of norepinephrine on adenylate cyclase activity initially is dependent on GTP; half-maximal inhibition of enzyme activity by norepinephrine is obtained with 0.2 micron GTP. The inhibition of adenylate cyclase activity by norepinephrine is reduced by 10 mM NaF and is abolished by 0.05 mM guanyl-5'-yl imidodiphosphate. Inhibitions of NG108-15 adenylate cyclase mediated by alpha receptors, opiate receptors, and muscarinic acetylcholine receptors are not additive; this suggests that the three species of receptors can be functionally coupled to the same adenylate cyclase molecules or molecules regulating the enzyme.  相似文献   

12.
Gangliosides inhibit basal, thyrotropin-induced and fluoride-induced adenylate cyclase activity of human thyroid membranes in physiological conditions. In contrast neutral glycolipids, phospholipids and neuraminic acid containing oligosaccharides show no effect. The efficacy of inhibition is more dependent upon the position of the sialic acid residues than upon their absolute number. In general gangliosides with disialyl groups are more inhibitory than those with single sialyl moieties. The inhibitory effects of the individual gangliosides on the two modes of stimulation are parallel. This parallelism suggests that the inhibitory effect is located at the postreceptor level and that the gangliosides interact directly with the adenylate cyclase system. A possible role of thyroid membrane gangliosides as suppressive cofactors of adenylate cyclase is discussed in relation to recent findings of stimulating anti-ganglioside antibodies in Graves' disease.  相似文献   

13.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

14.
15.
Some of the effects of GTP on human fat cell adenylate cyclase activity were studied. This nucleotide caused a dose-dependent inhibition of basal activity without affecting the hormone-activated rate of cAMP formation. Maximal effects were observed at GTP-concentrations of about 1 x 10(-4) M. The relative extent of hormonal stimulation was about 1.5-fold increased in the presence of 0.1 mM GTP.  相似文献   

16.
The effects of the alpha 1-adrenergic agonist methoxamine and the alpha 2-adrenergic agonist clonidine on isoproterenol stimulated adenylate cyclase activity were examined in plasma membranes prepared from female human subcutaneous adipose tissue. It was found that in the presence of 10 microM GTP and 100 mM NaCl increasing concentrations of both agonists inhibited basal and isoproterenol-stimulated adenylate cyclase activity. The inhibitory action of 5 x 10(-7) M clonidine could not be overcome by increasing concentrations of isoproterenol. These results suggest both alpha 1- and alpha 2-adrenergic agonists inhibit beta-agonist-stimulated adenylate cyclase activity in human adipose tissue.  相似文献   

17.
Polyamines (spermidine, spermine and putrescine) inhibited the adenylate cyclase activity in a concentration dependent manner in human erythrocyte plasma membranes. Spermidine (Spd) exhibited more inhibitory effect than spermine (Spm) and putrescine (Put). On the contrary, the addition of amino acids (arginine, glutamine and lysine) did not influence the basal enzyme activity. Other cations (polylysine, polyarginine and polyglutamine) also did not affect the enzyme activity. Addition of all the three polyamines (Spd, Spm and Put) in the reaction mixture exhibited moderate inhibitory effect on the adenylate cyclase activity whether it was basal or activated with sodium fluoride or with forskolin. Since the three polyamines exhibited maximum inhibitory effect at 10 microM concentration which is within physiological limit for mammalian tissues, we suggest that there may be a regulatory function of these molecules on adenylate cyclase activity in human erythrocytes.  相似文献   

18.
The effect of certain lipids on adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from fibroblasts in culture has been investigated. The unsaturated fatty acids, as well as lysolecithin, were found to act as potent inhibitors of fibroblast adenylate cyclase activity. Increasing the degree of unsaturation increases the extent of inhibition noted at a given fatty acid concentration. The inhibitory effect of the unsaturated fatty acids or lysolecithin is not selective for a specific function of the adenylate cyclase system since basal, and hormone- or fluoride-stimulated cyclase activities are inhibited to the same extent. The fatty acid-inactivated state of fibroblast adenylate cyclase is not readily reversed for enzyme activity is not restored when arachidonate-treated membranes are washed with Tris buffer containing 10 mm EDTA, 0.15 mm albumin, or 0.15 m KCl. Previous studies have shown that the adenylate cyclase system from Moloney sarcoma virus-transformed NRK (MNRK) cells is not stimulated by the addition of GTP or hormones. Of interest is the present finding that the addition of unsaturated fatty acids, or lysolecithin, over a narrow concentration range (0.1 – 0.2 mm) leads to partial restoration of GTP activation of MNRK cyclase activity. Hormonal responsiveness to l-epinephrine or prostaglandin E1 is not restored to the MNRK enzyme with fatty acid or lysolecithin treatment.  相似文献   

19.
Arginine vasopressin (AVP)- and parathyroid hormone (PTH)-sensitive adenylate cyclase were studied in the renal tissue of thyroparathyroidectomized dogs. The results indicate that AVP-sensitive adenylate cyclase activity was highest in the inner medulla followed by the middle medulla, outer medulla, and cortex, in declining order. In contrast, PTH-sensitive adenylate cyclase was absent in the inner medulla, and the highest stimulation was found in the cortex with lesser activity in outer and middle medulla. When 1 mm EGTA was included in the incubation mixture, the addition of both AVP- and PTH to the middle medullary homogenate resulted in additive responses suggesting two separate receptors for each hormone. This EGTA-induced additive effect was eliminated by the addition of calcium into the system, indicating that calcium concentration may be critical in modulating the interaction of AVP and PTH-sensitive adenylate cyclase. In contrast to some previous reports, a particulate fraction prepared from the middle medullary tissue was completely insensitive to either AVP or PTH. Hormonal sensitivity was restored by the addition of GTP or the supernatant.  相似文献   

20.
The cAMP content of intact cells as well as adenylate cyclase of the membrane-rich particulate fractions was studied with C6 glioma cells that had been exposed to the culture medium supplemented with islet-activating protein (IAP), one of the pertussis toxins. Both the increase in the cellular cAMP content in response to a beta-adrenergic agonist and the stimulation of membrane adenylate cyclase by the beta-agonist and/or GTP were markedly enhanced by the IAP treatment of C6 cells, but no change was induced in affinities of the agonist (or an antagonist) or GTP for their respective sites of action (or binding). The concentration of IAP required for the half-maximal enhancement was as low as 1 pg/ml, when the time of cell exposure to the toxin was prolonged to 18 h. No enhancement was observed for the basal cAMP content or basal enzyme activity, nor was activation of adenylate cyclase by Gpp(NH)p (or NaF) affected by IAP treatment. The Vmax value of a specific and low Km GTPase was significantly smaller in the membranes of IAP-treated cells than in those of control cells. Cholera toxin treatment of cells activated adenylate cyclase without exerting any influence on these IAP actions. Thus, IAP would appear to enhance beta-receptor-coupled stimulation of adenylate cyclase, in a manner distinct from cholera toxin, by rendering more GTP available to the GTP sites on the regulatory subunit of the receptor-enzyme system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号