首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Speranskiy K  Kurnikova M 《Biochemistry》2005,44(34):11508-11517
Ionotropic glutamate receptors (GluRs) are ligand-gated membrane channel proteins found in the central neural system that mediate a fast excitatory response of neurons. In this paper, we report theoretical analysis of the ligand-protein interactions in the binding pocket of the S1S2 (ligand binding) domain of the GluR2 receptor in the closed conformation. By utilizing several theoretical methods ranging from continuum electrostatics to all-atom molecular dynamics simulations and quantum chemical calculations, we were able to characterize in detail glutamate agonist binding to the wild-type and E705D mutant proteins. A theoretical model of the protein-ligand interactions is validated via direct comparison of theoretical and Fourier transform infrared spectroscopy (FTIR) measured frequency shifts of the ligand's carboxylate group vibrations [Jayaraman et al. (2000) Biochemistry 39, 8693-8697; Cheng et al. (2002) Biochemistry 41, 1602-1608]. A detailed picture of the interactions in the binding site is inferred by analyzing contributions to vibrational frequencies produced by protein residues forming the ligand-binding pocket. The role of mobility and hydrogen-bonding network of water in the ligand-binding pocket and the contribution of protein residues exposed in the binding pocket to the binding and selectivity of the ligand are discussed. It is demonstrated that the molecular surface of the protein in the ligand-free state has mainly positive electrostatic potential attractive to the negatively charged ligand, and the potential produced by the protein in the ligand-binding pocket in the closed state is complementary to the distribution of the electrostatic potential produced by the ligand itself. Such charge complementarity ensures specificity to the unique charge distribution of the ligand.  相似文献   

2.
Ionotropic glutamate receptors are essential for fast synaptic nerve transmission. Recent x-ray structures for the ligand-binding (S1S2) region of the GluR2 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive receptor have suggested how differences in protein/ligand interactions may determine whether a ligand will behave as a full agonist. We have used multiple molecular dynamics simulations of 2-5 ns duration to explore the structural dynamics of GluR2 S1S2 in the presence and absence of glutamate and in a complex with kainate. Our studies indicate that not only is the degree of domain closure dependent upon interactions with the ligand, but also that protein/ligand interactions influence the motion of the S2 domain with respect to S1. Differences in domain mobility between the three states (apo-S1S2, glutamate-bound, and kainate-bound) are surprisingly clear-cut. We discuss how these changes in dynamics may provide an explanation relating the mechanism of transmission of the agonist-binding event to channel opening. We also show here how the glutamate may adopt an alternative mode of binding not seen in the x-ray structure, which involves a key threonine (T480) side chain flipping into a new conformation. This new conformation results in an altered pattern of hydrogen bonding at the agonist-binding site.  相似文献   

3.
We have used Fourier transform infrared spectroscopy to provide a detailed picture of the interactions between the carboxylate groups of the ligands, glutamate, serine, and glutamine, with the ligand-binding domain of a prokaryotic ionotropic glutamate receptor (GluR0). The vibrational spectra indicate that the noncovalent interactions between the 1C(alpha)-carboxylate moiety of the ligand and the protein are stronger for glutamate than for serine and glutamine. These results correlate well with the higher affinity of glutamate for GluR0-S1S2 relative to the affinities of serine and glutamine. In addition, all three ligands induce similar changes in the vibrational spectra and intrinsic fluorescence of the protein, which indicates that all three ligands induce the same structural changes in the protein. These results are consistent with the recent crystal structures of the glutamate and serine bound forms of GluR0-S1S2 and in addition provide insights into the structure of the glutamine bound form of the protein.  相似文献   

4.
In the present report, using vibrational spectroscopy we have probed the ligand-protein interactions for full agonists (glutamate and alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionate (AMPA)) and a partial agonist (kainate) in the isolated ligand-binding domain of the GluR2 subunit of the glutamate receptor. These studies indicate differences in the strength of the interactions of the alpha-carboxylates for the various agonists, with kainate having the strongest interactions and glutamate having the weakest. Additionally, the interactions at the alpha-amine group of the agonists have also been probed by studying the environment of the non-disulfide-bonded Cys-425, which is in close proximity to the alpha-amine group. These investigations suggest that the interactions at the alpha-amine group are stronger for full agonists such as glutamate and AMPA as evidenced by the increase in the hydrogen bond strength at Cys-425. Partial agonists such as kainate do not change the environment of Cys-425 relative to the apo form, suggesting weak interactions at the alpha-amine group of kainate. In addition to probing the ligand environment, we have also investigated the changes in the secondary structure of the protein. Results clearly indicate that full agonists such as glutamate and AMPA induce similar secondary structural changes that are different from those of the partial agonist kainate; thus, a spectroscopic signature is provided for identifying the functional consequences of a specific ligand binding to this protein.  相似文献   

5.
Fluorescence resonance energy transfer was used to determine the structural changes in the extracellular ligand-binding segment in a functional glutamate receptor that contains the ligand-binding, transmembrane, and C-terminal segments. These studies indicate that the structural changes previously reported for the isolated ligand-binding domain due to the binding of partial and full agonists are also observed in this functional receptor, thus validating the detailed structure-function relationships that have been previously developed based on the structure of the isolated ligand-binding domain. Additionally, these studies provide the first evidence that there are no significant changes in the extent of cleft closure between the activated and desensitized states of the glutamate bound form of the receptor consistent with the previous functional investigations, which suggest that desensitization is mediated primarily by changes in the interactions between subunits composing the receptor.  相似文献   

6.
Jayaraman V  Keesey R  Madden DR 《Biochemistry》2000,39(30):8693-8697
Fourier transform infrared spectroscopy was used to investigate ligand-protein interactions in the ligand-binding domain of the GluR4 glutamate receptor subunit. Glutamate binding induces more extensive secondary structural changes in the ligand-binding domain than does kainate binding. Glutamate also alters the hydrogen bonding strength of the single free cysteine side chain in the domain, while kainate does not. On the other hand, the interaction of a binding site arginine residue with kainate appears to be stronger than that with glutamate. These results identify chemical and structural differences that may explain the different functional characteristics of the two agonists acting on ionotropic glutamate receptors. In doing so, they complement and extend recent crystallographic structures of the ligand-binding domain.  相似文献   

7.
The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.  相似文献   

8.
The crystal structures of the ligand-binding core of the agonist complexes of the glutamate receptor-B (GluR-B) subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective glutamate receptor indicate that the distal anionic group of agonist molecules are stabilized by interactions with an N-terminal region of an alpha-helix (helix F) in the lobe 2 ("domain 2," Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181) of the two-lobed ligand-binding domain. We used site-directed mutagenesis to further analyze the role of this region in the recognition of both agonists and antagonists by the AMPA receptor. Wild-type and mutated versions of the ligand-binding domain of GluR-D were expressed in insect cells as secreted soluble polypeptides and subjected to binding assays using [(3)H]AMPA, an agonist, and [(3)H]Ro 48-8587 (9-imidazol-1-yl-8-nitro-2,3,5,6-tetrahydro[1,2,4]triazolo[1,5-c] quinazoline-2,5-dione), a high affinity AMPA receptor antagonist, as radioligands. Single alanine substitutions at residues Leu-672 and Thr-677 severely affected the affinities for all agonists, as seen in ligand competition assays, whereas similar mutations at residues Asp-673, Ser-674, Gly-675, Ser-676, and Lys-678 selectively affected the binding affinities of one or two of the agonists. In striking contrast, the binding affinities of [(3)H]Ro 48-8587 and of another competitive antagonist, 6,7-dinitroquinoxaline-2,3-dione, were not affected by any of these alanine mutations, suggesting the absence of critical side-chain interactions. Together with ligand docking experiments, our results indicate a selective engagement of the side chains of the helix F region in agonist binding, and suggest that conformational changes involving this region may play a critical role in receptor activation.  相似文献   

9.
Previous structural and mutagenesis studies indicate that the invariant alpha-amino and alpha-carboxyl groups of glutamate receptor agonists are engaged in polar interactions with oppositely charged, conserved arginine and glutamate residues in the ligand-binding domain of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. To examine the role of these residues (R507 and E727 in the GluR-D subunit) in the discrimination between agonists and antagonists, we analyzed the ligand-binding properties of homomeric GluR-D and its soluble ligand-binding domain with mutations at these positions. Filter-binding assays using [3H]AMPA, an agonist, and [3H]Ro 48-8587, a high-affinity antagonist, as radioligands revealed that even a conservative mutation at R507 (R507K) resulted in the complete loss of both agonist and antagonist binding. In contrast, a negative charge at position 727 was necessary for agonist binding, whereas the isosteric mutation, E727Q, abolished all agonist binding but retained high-affinity binding for [3H]Ro 48-8587, displaceable by 7,8-dinitroquinoxaline-2,3-dione. Competition binding studies with antagonists representing different structural classes in combination with ligand docking experiments suggest that the role of E727 is antagonist-specific, ranging from no interaction to weak electrostatic interactions involving indirect and direct hydrogen bonding with the antagonist molecule. These results underline the importance of ion pair interaction with E727 for agonist activity and suggest that an interaction with R507, but not with E727, is essential for antagonist binding.  相似文献   

10.
Upon agonist binding, the bilobate ligand-binding domains of the ionotropic glutamate receptors (iGluR) undergo a cleft closure whose magnitude correlates broadly with the efficacy of the agonist. AMPA (alpha-amino-5-methyl-3-hydroxy-4-isoxazolepropionic acid) and kainate are nonphysiological agonists that distinguish between subsets of iGluR. Kainate acts with low efficacy at AMPA receptors. Here we report that the structure-based mutation L651V converts the GluR4 AMPA receptor into a dual-specificity AMPA/kainate receptor fully activated by both agonists. To probe the stereochemical basis of partial agonism, we have also investigated the correlation between agonist efficacy and a series of vibrational and fluorescence spectroscopic signals of agonist binding to the corresponding wild-type and mutant GluR4 ligand-binding domains. Two signals track the extent of channel activation: the maximal change in intrinsic tryptophan fluorescence and the environment of the single non-disulfide bonded C426, which appears to probe the strength of interactions with the ligand alpha-amino group. Both of these signals arise from functional groups that are poised to detect changes in the extent of channel cleft closure and thus provide additional information about the coupling between conformational changes in the ligand-binding domain and activation of the intact receptor.  相似文献   

11.
Recently, it has been demonstrated that Fourier transform infrared spectroscopy (FTIR) detects conformational changes in the glutamate receptor ligand-binding domain that are associated with agonist binding. Combined with flash photolysis, this observation offers the prospect of following conformational changes at individual protein and agonist moieties in parallel and with high temporal resolution. Here, we demonstrate that gamma(alpha-carboxy-2-nitrobenzyl) glutamate (caged glutamate) does not interact with the protein, and that following photolysis with UV light the FTIR difference spectrum indicated changes in the protein tertiary and secondary interactions. These changes were similar to those observed for the protein upon addition of free glutamate. Thus, caged glutamate and its photolysis by-products are inert in this system, whereas the released glutamate exhibits full activity. Difference spectra of caged glutamate and of reaction analogs permitted identification of and correction for FTIR signals arising from the photolytic reaction and confirmed that its products are indeed glutamate and 2-nitrosophenyl glyoxalic acid.  相似文献   

12.
Ionotropic glutamate receptors (iGluRs) are involved in excitatory signal transmission throughout the central nervous system and their malfunction is associated with various health disorders. GluK3 is a subunit of iGluRs, belonging to the subfamily of kainate receptors (GluK1–5). Several crystal structures of GluK1 and GluK2 ligand binding domains have been determined in complex with agonists and antagonists. However, little is known about the molecular mechanisms underlying GluK3 ligand binding properties and no compounds displaying reasonable selectivity towards GluK3 are available today. Here, we present the first X-ray crystal structure of the ligand binding domain of GluK3 in complex with glutamate, determined to 1.6 Å resolution. The structure reveals a conserved glutamate binding mode, characteristic for iGluRs, and a water molecule network in the glutamate binding site similar to that seen in GluK1. In GluK3, a slightly lower degree of domain closure around glutamate is observed compared to most other kainate receptor structures with glutamate. The volume of the GluK3 glutamate binding cavity was found to be of intermediate size between those of GluK1 and GluK2. The residues in GluK3 contributing to the subfamily differences in the binding sites are primarily: Thr520, Ala691, Asn722, Leu736 and Thr742. The GluK3 ligand binding domain seems to be less stabilized through interlobe interactions than GluK1 and this may contribute to the faster desensitization kinetics of GluK3.  相似文献   

13.
The umami taste receptor is a heterodimer composed of two members of the T1R taste receptor family: T1R1 and T1R3. It detects glutamate in humans, and is a more general amino acid detector in other species. We have constructed homology models of the ligand binding domains of the human umami receptor (based on crystallographic structures of the metabotropic glutamate receptor of the central nervous system). We have carried out molecular dynamics simulations of the ligand binding domains, and we find that the likely conformation is that T1R1 receptor protein exists in the closed conformation, and T1R3 receptor in the open conformation in the heterodimer. Further, we have identified the important binding interactions and have made an estimate of the relative free energies associated with the two glutamate binding sites.  相似文献   

14.
McFeeters RL  Oswald RE 《Biochemistry》2002,41(33):10472-10481
Ionotropic glutamate receptors play important roles in a variety of neuronal processes and have been implicated in multiple neurodegenerative diseases. The extracellular ligand-binding (S1S2) core of the GluR2 subtype can be expressed in bacteria as a soluble, monomeric protein with binding properties essentially identical to those of the intact receptor. The crystal structure of this protein has been determined in the presence and absence of various agonists and antagonists [Armstrong, N., Sun, Y., Chen, G. Q., and Gouaux, E. (1998) Nature 395, 913-917; Armstrong, N., and Gouaux, E. (2000) Neuron 28, 165-181]. The protein consists of two lobes, with the S1 segment composing the majority of lobe 1 and the S2 segment composing most of lobe 2. A domain closure upon ligand binding has been postulated, but details of intradomain motions have not been investigated. In this paper, the backbone motions of the ligand-binding core of GluR2 bound to glutamate were studied using (15)N longitudinal (T1) and transverse (T2) relaxation measurements as well as [1H]-15N nuclear Overhauser effects at 500 and 600 MHz. Residues in the agonist-binding pocket exhibited two main classes of motion. Those contacting the alpha-substituents of the ligand glutamate exhibited minimal internal motion, while those contacting the gamma-constituents exhibited exchange dynamics, indicating two dynamically distinct portions of the binding pocket. Also, two residues in transdomain linkers between lobes 1 and 2 show exchange, lending new insight into the previously proposed domain closure hypothesis. Finally, concerted motion of helix F suggests a pathway for ligand dissociation without the necessity of domain reopening.  相似文献   

15.
AMPA receptors are gated through binding of glutamate to a solvent-accessible ligand-binding domain. Upon glutamate binding, these receptors undergo a series of conformational rearrangements regulating channel function. Allosteric modulators can bind within a pocket adjacent to the ligand-binding domain to stabilize specific conformations and prevent desensitization. Yelshansky et al. (Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C., and Wollmuth, L. P. (2004) J. Neurosci. 24, 4728–4736) described a model of an electrostatic interaction between the ligand-binding domain and linker region to the pore that regulated channel desensitization. To test this hypothesis, we have conducted a series of experiments focusing on the R628E mutation. Using ultrafast perfusion with voltage clamp, we applied glutamate to outside-out patches pulled from transiently transfected HEK 293 cells expressing wild type or R628E mutant GluA2. In response to a brief pulse of glutamate (1 ms), mutant receptors deactivated with significantly slower kinetics than wild type receptors. In addition, R628E receptors showed significantly more steady-state current in response to a prolonged (500-ms) glutamate application. These changes in receptor kinetics occur through a pathway that is independent of that of allosteric modulators, which show an additive effect on R628E receptors. In addition, ligand binding assays revealed the R628E mutation to have increased affinity for agonist. Finally, we reconciled experimental data with computer simulations that explicitly model mutant and modulator interactions. Our data suggest that R628E stabilizes the receptor closed cleft conformation by reducing agonist dissociation and the transition to the desensitized state. These results suggest that the AMPA receptor external vestibule is a viable target for new positive allosteric modulators.  相似文献   

16.
Metabotropic glutamate receptors (mGluRs) function as neuronal G-protein-coupled receptors and this requires efficient membrane targeting through associations with cytoplasmic proteins. However, the molecular mechanism regulating mGluR cell-surface trafficking remains unknown. We report here that mGluR trafficking is controlled by the autoregulatory assembly of a scaffold protein Tamalin. In the absence of mGluR, Tamalin self-assembles into autoinhibited conformations, through its PDZ domain and C-terminal intrinsic ligand motif. X-ray crystallographic analyses visualized integral parts of the oligomeric self-assemblies of Tamalin, which require not only the novel hydrophobic dimerization interface but also canonical and noncanonical PDZ/ligand autoinhibitory interactions. The mGluR cytoplasmic region can competitively bind to Tamalin at a higher concentration, disrupting weak inhibitory interactions. The atomic view of mGluR association suggests that this rearrangement is dominated by electrostatic attraction and repulsion. We also observed in mammalian cells that the association liberates the intrinsic ligand toward a motor protein receptor, thereby facilitating mGluR cell-surface trafficking. Our study suggests a novel regulatory mechanism of the PDZ domain, by which Tamalin switches between the trafficking-inhibited and -active forms depending on mGluR association.  相似文献   

17.
Ligand-gated ion channels of the Cys loop family are receptors for small amine-containing neurotransmitters. Charged amino acids are strongly conserved in the ligand-binding domain of these receptor proteins. To investigate the role of particular residues in ligand binding of the serotonin 5-HT3AS receptor (5-HT3R), glutamate amino acid residues at three different positions, Glu97, Glu224, and Glu235, in the extracellular N-terminal domain were substituted with aspartate and glutamine using site-directed mutagenesis. Wild type and mutant receptor proteins were expressed in HEK293 cells and analyzed by electrophysiology, radioligand binding, fluorescence measurements, and immunochemistry. A structural model of the ligand-binding domain of the 5-HT3R based on the acetylcholine binding protein revealed the position of the mutated amino acids. Our results demonstrate that mutations of Glu97, distant from the ligand-binding site, had little effect on the receptor, whereas mutations Glu224 and Glu235, close to the predicted binding site, are indeed important for ligand binding. Mutations E224Q, E224D, and E235Q decreased EC50 and Kd values 5-20-fold, whereas E235D was functionally expressed at a low level and had a more than 100-fold increased EC50 value. Comparison of the fluorescence properties of a fluorescein-labeled antagonist upon binding to wild type 5-HT3R and E235Q, allowed us to localize Glu235 within a distance of 1 nm around the ligand-binding site, as proposed by our model.  相似文献   

18.
The receptor for avian sarcoma/leukosis virus subtype A (ASLV-A), Tva, is the simplest member of the low density lipoprotein receptor family containing a single ligand-binding repeat (LBR). Most LBRs contain a central Trp (Trp33 in Tva) that is important for ligand binding and, for the low density lipoprotein receptor, is associated with familial hypercholesterolemia. The Tva ligand-binding module contains a second Trp (Trp48) that is part of a DEW motif present in a subset of LBRs. Trp48 is important for ASLV-A infectivity. A soluble Tva (sTva) ligand-binding module is sufficient for ASLV-A infectivity. Tva interacts with the viral glycoprotein, and a soluble receptor-binding domain (SUA) binds sTva with picomolar affinity. We investigated whether Tva, a retroviral receptor, could behave as a classic LBR by assessing sTva interactions with the universal receptor-associated protein (RAP) and comparing these interactions with those between sTva and its viral ligand (SUA). To address the role of the two Trp residues in Tva function, we prepared sTva harboring mutations of Trp33, Trp48, or both and determined the binding kinetics with RAP and SUA. We found that sTva behaved as a "normal" receptor toward RAP, requiring both calcium and Trp33 for binding. However, sTva binding to SUA required neither calcium nor Trp33. Furthermore, sTva could bind both RAP and SUA simultaneously. These results show that the single LBR of Tva has two ligand-binding sites, raising the possibility that other LBRs may also.  相似文献   

19.
Ligand-induced oligomerization is a universal phenomenon among growth factor receptors. Although the mechanism involved is yet to be defined, much evidence indicates that receptor oligomerization plays a crucial role in receptor activation and signal transduction. Here we show that epidermal growth factor (EGF) is able to stimulate the oligomerization of a recombinant, soluble, extracellular ligand-binding domain of EGF receptor. Covalent cross-linking experiments, analysis by sodium dodecyl sulfate-gel electrophoresis, size exclusion chromatography, and electron microscopy demonstrate that receptor dimers, trimers and larger multimers are formed in response to EGF. This establishes that receptor oligomerization is an intrinsic property of the extracellular ligand-binding domain of EGF receptor. Ligand-induced conformational change in the extracellular domain will stimulate receptor-receptor interactions. This may bring about the allosteric change involved in signal transduction from the extracellular domain across the plasma membrane, resulting in the activation of the cytoplasmic kinase domain. Electron microscopic images of individual extracellular ligand-binding domains appear as clusters of four similarly-sized stain-excluding areas arranged around a central, relatively less stain-excluded area. This suggests that the extracellular ligand-binding domain is structurally composed of four separate domains.  相似文献   

20.
High-resolution structures of the ligand binding core of GluR0, a glutamate receptor ion channel from Synechocystis PCC 6803, have been solved by X-ray diffraction. The GluR0 structures reveal homology with bacterial periplasmic binding proteins and the rat GluR2 AMPA subtype neurotransmitter receptor. The ligand binding site is formed by a cleft between two globular alpha/beta domains. L-Glutamate binds in an extended conformation, similar to that observed for glutamine binding protein (GlnBP). However, the L-glutamate gamma-carboxyl group interacts exclusively with Asn51 in domain 1, different from the interactions of ligand with domain 2 residues observed for GluR2 and GlnBP. To address how neutral amino acids activate GluR0 gating we solved the structure of the binding site complex with L-serine. This revealed solvent molecules acting as surrogate ligand atoms, such that the serine OH group makes solvent-mediated hydrogen bonds with Asn51. The structure of a ligand-free, closed-cleft conformation revealed an extensive hydrogen bond network mediated by solvent molecules. Equilibrium centrifugation analysis revealed dimerization of the GluR0 ligand binding core with a dissociation constant of 0.8 microM. In the crystal, a symmetrical dimer involving residues in domain 1 occurs along a crystallographic 2-fold axis and suggests that tetrameric glutamate receptor ion channels are assembled from dimers of dimers. We propose that ligand-induced conformational changes cause the ion channel to open as a result of an increase in domain 2 separation relative to the dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号