首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral RNA polymerases   总被引:13,自引:0,他引:13  
  相似文献   

2.
RNA 沉默的病毒抑制子   总被引:2,自引:0,他引:2  
RNA 沉默是一种在真核生物体内普遍保守的、通过核酸序列特异性的相互作用来抑制基因表达的调控机制 . RNA 沉默的一种重要生物学效应是防御病毒的侵染,而针对寄主的这种防御机制,许多植物病毒已演化通过编码 RNA 沉默的抑制子来克服这种防御反应 . 目前,已从植物、动物和人类病毒中鉴定了 20 多种 RNA 沉默的抑制子,围绕抑制子的鉴定和作用机理研究已成为病毒学研究的一个热点 . 对 RNA 沉默抑制子的发现、鉴定方法、作用机理及与病毒病症状形成的关系、动物病毒的沉默抑制子等方面的最新进展做了综述,并对沉默抑制子的应用和存在的问题进行了讨论 .  相似文献   

3.
Viral escape from antisense RNA   总被引:4,自引:0,他引:4  
RNA coliphage SP was propagated for several generations on a host expressing an inhibitory antisense RNA complementary to bases 31–270 of the positive-stranded genome. Phages evolved that escaped inhibition. Typically, these escape mutants contained 3–4 base substitutions, but different sequences were observed among different isolates. The mutations were located within three different types of structural features within the predicted secondary structure of SP genomic RNA: (i) hairpin loops; (ii) hairpin stems; and (iii) the 5' region of the phage genome complementary to the antisense molecule. Computer modelling of the mutant genomic RNAs showed that all of the substitutions within hairpin stems improved the Watson–Crick pairing of the stem. No major structural rearrangements were predicted for any of the mutant genomes, and most substitutions in coding regions did not alter the amino acid sequence. Although the evolved phage populations were polymorphic for substitutions, many substitutions appeared independently in two selected lines. The creation of a new, perfect, antisense RNA against an escape mutant resulted in the inhibition of that mutant but not of other escape mutants nor of the ancestral, unevolved phage. Thus, at least in this system, a population of viruses that evolved to escape from a single antisense RNA would require a cocktail of several antisense RNAs for inhibition.  相似文献   

4.
Gene silencing (RNA silencing) plays a fundamental role in antiviral defense in plants, fungi and invertebrates. Viruses encode proteins that suppress gene silencing to counter host defense. Viral suppressors of RNA silencing (VSRs) have been identified from almost all plant virus genera and some viruses of insects and mammals. Recent studies have revealed that VSRs counter host defense and interfere with host gene regulation by interacting with RNA or important components of the RNA silencing pathway. Here, we review the current understanding of the complex mechanisms of VSRs that have been revealed by recent studies.  相似文献   

5.
The infection and replication of viruses in the host induce diverse mechanisms for combating viral infection. One of the best-studied antiviral defence mechanisms is based on RNA silencing. Consistently, several viral suppressors of RNA silencing (VSRs) have been identified from almost all plant virus genera, which are surprisingly diverse within and across kingdoms, exhibiting no obvious sequence similarities. VSRs efficiently inhibit host antiviral responses by interacting with the key components of cellular silencing machinery, often mimicking their normal cellular functions. Recent findings have revealed that the impact of VSRs on endogenous pathways is more complex and profound than had been estimated thus far. This review highlights the current understanding of and new insights into the mechanisms and functions of plant VSRs.  相似文献   

6.
Viral suppressors of RNA silencing   总被引:27,自引:0,他引:27  
The suppression of RNA silencing by plant viruses represents a viral adaptation to a novel host antiviral defense. Three types of viral suppressors have been identified through the use of a variety of silencing suppression assays. The first two types of suppressor are capable of a complete or partial reversal of pre-existing RNA silencing; the third type does not reverse RNA silencing but can instead prevent its systemic signaling.  相似文献   

7.
8.
The presence of full-length complements of viral genomic RNA is a hallmark of RNA virus replication within an infected cell. As such, methods for detecting and measuring specific strands of viral RNA in infected cells and tissues are important in the study of RNA viruses. Strand-specific quantitative real-time PCR (ssqPCR) assays are increasingly being used for this purpose, but the accuracy of these assays depends on the assumption that the amount of cDNA measured during the quantitative PCR (qPCR) step accurately reflects amounts of a specific viral RNA strand present in the RT reaction. To specifically test this assumption, we developed multiple ssqPCR assays for the positive-strand RNA virus o''nyong-nyong (ONNV) that were based upon the most prevalent ssqPCR assay design types in the literature. We then compared various parameters of the ONNV-specific assays. We found that an assay employing standard unmodified virus-specific primers failed to discern the difference between cDNAs generated from virus specific primers and those generated through false priming. Further, we were unable to accurately measure levels of ONNV (−) strand RNA with this assay when higher levels of cDNA generated from the (+) strand were present. Taken together, these results suggest that assays of this type do not accurately quantify levels of the anti-genomic strand present during RNA virus infectious cycles. However, an assay permitting the use of a tag-specific primer was able to distinguish cDNAs transcribed from ONNV (−) strand RNA from other cDNAs present, thus allowing accurate quantification of the anti-genomic strand. We also report the sensitivities of two different detection strategies and chemistries, SYBR® Green and DNA hydrolysis probes, used with our tagged ONNV-specific ssqPCR assays. Finally, we describe development, design and validation of ssqPCR assays for chikungunya virus (CHIKV), the recent cause of large outbreaks of disease in the Indian Ocean region.  相似文献   

9.
Viral RNA is a common activator of antiviral responses. In this review, we dissect the mechanism of viral RNA recognition by the small interfering RNA pathway in Drosophila melanogaster. This antiviral response in fruit flies can help understand general principles of nucleic acid recognition.  相似文献   

10.
Many properties of organisms show great robustness against mutations. Whether this robustness is an evolved property or intrinsic to genetic systems is by and large unknown. An evolutionary origin of robustness would require a rethinking of key concepts in the field of molecular evolution, such as gene-specific neutral mutation rates, or the context-independence of deleterious mutations. We provide evidence that mutational robustness of the genome of RNA viruses to mutational changes in secondary structure has evolved. J. Exp. Zool. ( Mol. Dev. Evol.) 285:119-127, 1999.  相似文献   

11.
Viral suppression of RNA silencing in plants   总被引:2,自引:0,他引:2  
  相似文献   

12.
Poly U Tracts absent from Viral RNA   总被引:19,自引:0,他引:19  
Polyadenylic acid (poly A) is covalently attached to the RNA molecules in which it occurs1–4, but its exact location is not definitely established. It was at first thought to exist only at the 3′OH terminus of RNA molecules5–6 but recently Ryskov et al. claimed to have found it at the 5′ terminus of light nuclear RNA7 and it is possible that it also exists internally.  相似文献   

13.
Viral IRES RNA structures and ribosome interactions   总被引:1,自引:1,他引:1  
In eukaryotes, protein synthesis initiates primarily by a mechanism that requires a modified nucleotide 'cap' on the mRNA and also proteins that recruit and position the ribosome. Many pathogenic viruses use an alternative, cap-independent mechanism that substitutes RNA structure for the cap and many proteins. The RNAs driving this process are called internal ribosome-entry sites (IRESs) and some are able to bind the ribosome directly using a specific 3D RNA structure. Recent structures of IRES RNAs and IRES-ribosome complexes are revealing the structural basis of viral IRES' 'hijacking' of the protein-making machinery. It now seems that there are fundamental differences in the 3D structures used by different IRESs, although there are some common features in how they interact with ribosomes.  相似文献   

14.
Class a and class b 30 to 40S RNA subunits obtained by heat dissociation from the 60 to 70S RNA complex of avian tumor viruses were compared with several RNA standards by electrophoresis in formamide-polyacrylamide gels. Class a RNA was found to have a lower electrophoretic mobility and hence probably a higher molecular weight than class b RNA. The absolute molecular weight of class a and b RNA could not be determined with accuracy, because the relationship between logarithm of molecular weight and mobility of the RNA standards was not linear. The size of class a RNA fell into the range of 2.4 x 10(6) to 3.4 x 10(6) daltons and that of class b into the range of 2.2 x 10(6) to 2.9 x 10(6) daltons, depending on the standards used. The possible biological significance of this difference is discussed.  相似文献   

15.
16.
《Seminars in Virology》1997,8(3):166-175
The pseudoknot or “base-paired loop region” is a widespread structural motif in all kinds of viral RNAs. Detailed structures of hairpin-type pseudoknots, obtained by NMR, are now emerging, but it is still not clear which structural features are responsible for the different functions in processes like translation and replication. Especially noncoding regions are rich sources of pseudoknot structures, where they occur in domains like IRES elements and tRNA-like structures. But also its role in coding regions like in ribosomal -1 frameshifting and read-through is well established, although the precise mechanism of interference with the translational mechanism remains unknown.  相似文献   

17.
A bovine leukemia virus (BLV)-producing cell line, fetal lamb kidney cells infected with BLV (FLK) contains one or a few copies of BLV proviral DNA in its genome. These cells contain 0.002% of viral RNA which sediments, in a sucrose gradient, at about 35S and between 18S and 28S.In cattle affected by enzootic bovine leukosis, tumor cells and circulating lymphocytes also contain one or a few copies of BLV proviral DNA integrated in their genome. However, in all cases tested (except one), no viral RNA was detected in these cells in conditions where one or two copies of viral genomic RNA per cell would have been easily detected.  相似文献   

18.
19.
20.
An earlier developed purified cell-free system was used to explore the potential of two RNA-directed RNA polymerases (RdRps), Qbeta phage replicase and the poliovirus 3Dpol protein, to promote RNA recombination through a primer extension mechanism. The substrates of recombination were fragments of complementary strands of a Qbeta phage-derived RNA, such that if aligned at complementary 3'-termini and extended using one another as a template, they would produce replicable molecules detectable as RNA colonies grown in a Qbeta replicase-containing agarose. The results show that while 3Dpol efficiently extends the aligned fragments to produce the expected homologous recombinant sequences, only nonhomologous recombinants are generated by Qbeta replicase at a much lower yield and through a mechanism not involving the extension of RNA primers. It follows that the mechanisms of RNA recombination by poliovirus and Qbeta RdRps are quite different. The data favor an RNA transesterification reaction catalyzed by a conformation acquired by Qbeta replicase during RNA synthesis and provide a likely explanation for the very low frequency of homologous recombination in Qbeta phage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号