首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cutaneous burn trauma causes cardiac contraction and relaxation defects, but the mechanism is unclear. Previous studies suggest that burn-related changes in myocyte handling of calcium may play an important role in postburn cardiac dysfunction. With the use of a high dissociation constant (K(d)) calcium indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid (TF-BAPTA) and (19)F NMR spectroscopy, this study examined the correlation between the changes in cytosolic free calcium concentration ([Ca(2+)](i)) and cardiac function after burn trauma. Sprague-Dawley rats were given scald burn (over 40% of the total body surface area) or sham burn. Twenty-four hours later, the hearts were excised and perfused by the Langendorff method with a modified phosphate-free Krebs-Henseleit bicarbonate buffer. Left ventricular (LV) developed pressure (LVDP), calculated from peak systolic LV pressure and LV end-diastolic pressure, was assessed through a catheter attached to an intraventricular balloon. At the same time, (31)P and (19)F NMR spectroscopy was performed before and after TF-BAPTA loading. LVDP measured in hearts from burned rats was <40% than that measured in hearts from sham burn rats (65 +/- 6 vs. 110 +/- 12 mmHg, P < 0.01); [Ca(2+)](i) was increased fourfold in hearts from the burned group compared with that measured in the sham burn group (0.807 +/- 0.192 vs. 3.891 +/- 0.929 microM). Loading TF-BAPTA in hearts transiently decreased LVDP by 15%. Phosphocreatine-to-P(i) ratio decreased, but ATP and intracellular pH remained unchanged by either TF-BAPTA loading or burn trauma. In conclusion, burn trauma impaired cardiac contractility, and this functional defect was paralleled by a significant rise in [Ca(2+)](i) in the heart.  相似文献   

2.
Long-lasting and rapid calcium changes during mitosis   总被引:11,自引:7,他引:4       下载免费PDF全文
A more complete understanding of calcium's role in cell division requires knowledge of the timing, magnitude, and duration of changes in cytoplasmic-free calcium, [Ca2+]i, associated with specific mitotic events. To define the temporal relationship of changes in [Ca2+]i to cellular and chromosomal movements, we have measured [Ca2+]i every 6-7 s in single-dividing Pt K2 cells using fura-2 and microspectrophotometry, coupling each calcium measurement with a bright-field observation. In the 12 min before discernable chromosome some separation, 90% of metaphase cells show at least one transient of increased [Ca2+]i, 72% show their last transient within 5 min, and a peak of activity is seen at 3 min before chromosome separation. The mean [Ca2+]i of the metaphase transients is 148 +/- 31 nM (61 transients in 35 cells) with an average duration of 21 +/- 14 s. The timing of these increases makes it unlikely that these transient increases in [Ca2+]i are acting directly to trigger the start of anaphase. However, it is possible that a transient rise in calcium during late metaphase is part of a more complex progression to anaphase. In addition to these transient changes, a gradual increase in [Ca2+]i was observed starting in late anaphase. Within the 2 min surrounding cytokinesis onset, 82% of cells show a transient increase in [Ca2+]i to 171 +/- 48 nM (53 transients in 32 cells). The close temporal correlation of these changes with cleavage is consistent with a more direct role for calcium in this event, possibly by activating the contractile system. To assess the specificity of these changes to the mitotic cycle, we examined calcium changes in interphase cells. Two-thirds of interphase cells show no transient increases in calcium with a mean [Ca2+]i of 100 +/- 18 nM (n = 12). However, one-third demonstrate dramatic and repeated transient increases in [Ca2+]i. The mean peak [Ca2+]i of these transients is 389 +/- 70 nM with an average duration of 77 s. The necessity of any of these transient changes in calcium for the completion of mitotic or interphase activities remains under investigation.  相似文献   

3.
The cardiac sarcolemmal Na-Ca exchanger (NCX) is allosterically regulated by [Ca](i) such that when [Ca](i) is low, NCX current (I(NCX)) deactivates. In this study, we used membrane potential (E(m)) and I(NCX) to control Ca entry into and Ca efflux from intact cardiac myocytes to investigate whether this allosteric regulation (Ca activation) occurs with [Ca](i) in the physiological range. In the absence of Ca activation, the electrochemical effect of increasing [Ca](i) would be to increase inward I(NCX) (Ca efflux) and to decrease outward I(NCX). On the other hand, Ca activation would increase I(NCX) in both directions. Thus, we attributed [Ca](i)-dependent increases in outward I(NCX) to allosteric regulation. Ca activation of I(NCX) was observed in ferret myocytes but not in wild-type mouse myocytes, suggesting that Ca regulation of NCX may be species dependent. We also studied transgenic mouse myocytes overexpressing either normal canine NCX or this same canine NCX lacking Ca regulation (Delta680-685). Animals with the normal canine NCX transgene showed Ca activation, whereas animals with the mutant transgene did not, confirming the role of this region in the process. In native ferret cells and in mice with expressed canine NCX, allosteric regulation by Ca occurs under physiological conditions (K(mCaAct) = 125 +/- 16 nM SEM approximately resting [Ca](i)). This, along with the observation that no delay was observed between measured [Ca](i) and activation of I(NCX) under our conditions, suggests that beat to beat changes in NCX function can occur in vivo. These changes in the I(NCX) activation state may influence SR Ca load and resting [Ca](i), helping to fine tune Ca influx and efflux from cells under both normal and pathophysiological conditions. Our failure to observe Ca activation in mouse myocytes may be due to either the extent of Ca regulation or to a difference in K(mCaAct) from other species. Model predictions for Ca activation, on which our estimates of K(mCaAct) are based, confirm that Ca activation strongly influences outward I(NCX), explaining why it increases rather than declines with increasing [Ca](i).  相似文献   

4.
Increased diastolic chamber stiffness (upward arrow DCS) during ischemia may result from increased diastolic calcium, rigor, or reduced velocity of relaxation. We tested these potential mechanisms during severe ischemia in isolated red blood cell-perfused isovolumic rabbit hearts. Ischemia (coronary flow reduced 83%) reduced left ventricular (LV) contractility by 70%, which then remained stable. DCS progressively increased. When LV end-diastolic pressure had increased 5 mmHg, myofilament calcium responsiveness was altered with 50 mmol/l NH(4)Cl or 10 mmol/l butanedione monoxime. These affected contractility (i.e., a calcium-mediated force) but not upward arrow DCS. Second, quick length changes reversed upward arrow DCS, supporting a rigor mechanism. Third, ischemia increased the time constant of isovolumic pressure decline from 47 +/- 3 to 58 +/- 3 ms (P < 0.02) but concomitantly abbreviated the contraction-relaxation cycle, i.e., pressure dissipation occurred earlier without diastolic tetanization. Finally, to assess any link between rate of relaxation and upward arrow DCS, hearts were exposed to 10 mmol/l calcium. Calcium doubled contractility and accelerated relaxation velocity, but without affecting upward arrow DCS. Thus upward arrow DCS developed during ischemia despite severely reduced contractility via a rigor (and not calcium mediated) mechanism. Calcium resequestration capacity was preserved, and reduced relaxation velocity was not linked to upward arrow DCS.  相似文献   

5.
By means of electron probe microanalysis (EPMA), we quantified changes in total sodium [Na] and calcium [Ca] concentration owing to the following: (i) local axial stretch (LAS) of isolated rat myocytes and (ii) end-to-end stretch (ETES) of rat ventricular trabeculae. For LAS, the distance between patch pipette and a cell-attached stylus was increased by maximally 20%; this activated a nonselective cationic current I(SAC) of approximately -0.5 nA, which was blocked by streptomycin. Trabeculae were stretched end-to-end from 85% L(max) to L(max). Stretch increased cytosolic [Na](total) by 34% in isolated myocytes (p < 0.001) and by 43% in trabeculae (p < 0.001). The increment in nuclear [Na](total) was 21% in myocytes (p < 0.01) and 20% in trabeculae (p < 0.001). Stretch increased [Ca](total) in isolated myocytes, in both cytosol (from 0.63 +/- 0.09 to 1.09 +/- 0.20 mmol/L, p < 0.05) and nucleus (from 0.33 +/- 0.05 to 0.64 +/- 0.13 mmol/L, p < 0.05). In trabeculae, the stretch-induced increment of 51% in cytosolic [Ca](total) remained nonsignificant (p < 0.15). In the nucleus, [Ca](total) did not change. We interpret the difference of stretch on nuclear calcium in myocytes vs. trabeculae with the assumption that LAS, but not ETES, produces shear-stress components that translate the mechanical stimulus deeply into the cell where it may modulate [Ca](total) by signals independent of I(SAC).  相似文献   

6.
《The Journal of cell biology》1987,105(6):2685-2693
When macrophages and neutrophils are allowed to settle onto an appropriate surface, they attach and spread in a frustrated attempt to phagocytose the substrate. Spreading is associated with extensive rearrangements of the actin cytoskeleton which resemble those occurring during phagocytosis. We have previously shown that spreading in human neutrophils is preceded by an increase in cytosolic-free calcium concentration [( Ca2+]i) (Kruskal, B. A., S. Shak, and F. R. Maxfield. 1986. Proc. Natl. Acad. Sci. USA. 83:2919-2923). To assess the generality of this signal, we measured [Ca2+]i in single thioglycollate- elicited mouse peritoneal macrophages as they spread on an immune complex-coated surface, using fura-2 microspectrofluorometry. A [Ca2+]i increase always precedes spreading. This increase can involve several (up to 8) [Ca2+]i spikes, with an average peak value of 387 +/- 227 nM (mean +/- SD, n = 92 peaks in 24 cells), before spreading is detected. Neither spreading nor the magnitude of these spikes is significantly altered by removal of extracellular calcium. Many of the spreading macrophages exhibit periodic [Ca2+]i increases before and during spreading. The proportion which does so varies among experiments from 0 to 90%, but it is frequently greater than 40%. The largest number of cells (approximately 25%) exhibited only a single peak. In 13 cells that showed more than 10 peaks, the median period was 29 s (range 19-69 s). The average peak [Ca2+]i was 385 +/- 266 nM (mean +/- SD, n = 208 peaks in 14 cells). The calcium producing these increases is derived from intracellular pools. The oscillations occur with spreading on either opsonized or nonopsonized surfaces. The function of these oscillations is not clear, but the large number of cells which exhibit them suggest that they may be important to macrophage function.  相似文献   

7.
We used transgenic (TG) mice overexpressing mutant alpha-tropomyosin [alpha-Tm(Asp175Asn)], linked to familial hypertrophic cardiomyopathy (FHC), to test the hypothesis that this mutation impairs cardiac function by altering the sensitivity of myofilaments to Ca(2+). Left ventricular (LV) pressure was measured in anesthetized nontransgenic (NTG) and TG mice. In control conditions, LV relaxation was 6,970 +/- 297 mmHg/s in NTG and 5,624 +/- 392 mmHg/s in TG mice (P < 0.05). During beta-adrenergic stimulation, the rate of relaxation increased to 8,411 +/- 323 mmHg/s in NTG and to 6,080 +/- 413 mmHg/s in TG mice (P < 0.05). We measured the pCa-force relationship (pCa = -log [Ca(2+)]) in skinned fiber bundles from LV papillary muscles of NTG and TG hearts. In control conditions, the Ca(2+) concentration producing 50% maximal force (pCa(50)) was 5.77 +/- 0.02 in NTG and 5.84 +/- 0.01 in TG myofilament bundles (P < 0.05). After protein kinase A-dependent phosphorylation, the pCa(50) was 5.71 +/- 0.01 in NTG and 5.77 +/- 0. 02 in TG myofilament bundles (P < 0.05). Our results indicate that mutant alpha-Tm(Asp175Asn) increases myofilament Ca(2+)-sensitivity, which results in decreased relaxation rate and blunted response to beta-adrenergic stimulation.  相似文献   

8.
CICR from an intracellular store, here directly characterized as the ER, usually refers to net Ca(2)+ release that amplifies evoked elevations in cytosolic free calcium [Ca2+](i). However, the companion paper (Albrecht, M.A., S.L. Colegrove, J. Hongpaisan, N.B. Pivovarova, S.B. Andrews, and D.D. Friel. 2001. J. Gen. Physiol. 118:83-100) shows that in sympathetic neurons, small [Ca2+](i) elevations evoked by weak depolarization stimulate ER Ca accumulation, but at a rate attenuated by activation of a ryanodine-sensitive CICR pathway. Here, we have measured depolarization-evoked changes in total ER Ca concentration ([Ca](ER)) as a function of [Ca2+](i), and found that progressively larger [Ca2+](i) elevations cause a graded transition from ER Ca accumulation to net release, consistent with the expression of multiple modes of CICR. [Ca](ER) is relatively high at rest (12.8 +/- 0.9 mmol/kg dry weight, mean +/- SEM) and is reduced by thapsigargin or ryanodine (5.5 +/- 0.7 and 4.7 +/- 1.1 mmol/kg, respectively). [Ca](ER) rises during weak depolarization (to 17.0 +/- 1.6 mmol/kg over 120s, [Ca2+](i) less than approximately 350 nM), changes little in response to stronger depolarization (12.1 +/- 1.1 mmol/kg, [Ca2+](i) approximately 700 nM), and declines (to 6.5 +/- 1.0 mmol/kg) with larger [Ca2+](i) elevations (>1 microM) evoked by the same depolarization when mitochondrial Ca2+ uptake is inhibited (FCCP). Thus, net ER Ca2+ transport exhibits a biphasic dependence on [Ca2+](i). With mitochondrial Ca2+ uptake enabled, [Ca](ER) rises after repolarization (to 16.6 +/- 1.8 mmol/kg at 15 min) as [Ca2+](i) falls within the permissive range for ER Ca accumulation over a period lengthened by mitochondrial Ca2+ release. Finally, although spatially averaged [Ca](ER) is unchanged during strong depolarization, net ER Ca2+ release still occurs, but only in the outermost approximately 5-microm cytoplasmic shell where [Ca2+](i) should reach its highest levels. Since mitochondrial Ca accumulation occurs preferentially in peripheral cytoplasm, as demonstrated here by electron energy loss Ca maps, the Ca content of ER and mitochondria exhibit reciprocal dependencies on proximity to sites of Ca2+ entry, possibly reflecting indirect mitochondrial regulation of ER Ca(2)+ transport.  相似文献   

9.
Many studies suggest myocardial ischemia-reperfusion (I/R) injury results largely from cytosolic proton (H(i))-stimulated increases in cytosolic Na (Na(i)), which cause Na/Ca exchange-mediated increases in cytosolic Ca concentration ([Ca]i). Because cold, crystalloid cardioplegia (CCC) limits [H]i, we tested the hypothesis that in newborn hearts, CCC diminishes H(i), Na(i), and Ca(i) accumulation during I/R to limit injury. NMR measured intracellular pH (pH(i)), Na(i), [Ca]i, and ATP in isolated Langendorff-perfused newborn rabbit hearts. The control ischemia protocol was 30 min for baseline perfusion, 40 min for global ischemia, and 40 min for reperfusion, all at 37 degrees C. CCC protocols were the same, except that ice-cold CCC was infused for 5 min before ischemia and heart temperature was lowered to 12 degrees C during ischemia. Normal potassium CCC solution (NKCCC) was identical to the control perfusate, except for temperature; the high potassium (HKCCC) was identical to NKCCC, except that an additional 11 mmol/l KCl was substituted isosmotically for NaCl. NKCCC and HKCCC were not significantly different for any measurement. The following were different (P < 0.05). End-ischemia pH(i) was higher in the CCC than in the control group. Similarly, CCC limited increases in Na(i) during I/R. End-ischemia Na(i) values (in meq/kg dry wt) were 115 +/- 16 in the control group, 49 +/- 13 in the NKCCC group, and 37 +/- 12 in the HKCCC group. CCC also improved [Ca]i recovery during reperfusion. After 40 min of reperfusion, [Ca](i) values (in nmol/l) were 302 +/- 50 in the control group, 145 +/- 13 in the NKCCC group, and 182 +/- 19 in the HKCCC group. CCC limited ATP depletion during ischemia and improved recovery of ATP and left ventricular developed pressure and decreased creatine kinase release during reperfusion. Surprisingly, CCC did not significantly limit [Ca]i during ischemia. The latter is explained as the result of Ca release from intracellular buffers on cooling.  相似文献   

10.
Erythropoietin modulates calcium influx through TRPC2   总被引:4,自引:0,他引:4  
Mammalian isoforms of calcium-permeable Drosophila transient receptor potential channels (TRPC) are involved in the sustained phase of calcium entry in nonexcitable cells. Erythropoietin (Epo) stimulates a rise in intracellular calcium ([Ca](i)) via activation of voltage-independent calcium channel(s) in erythroid cells. Here, involvement of murine orthologs of classical TRPC in the Epo-modulated increase in [Ca](i) was examined. RT-PCR of TRPC 1-6 revealed high expression of only TRPC2 in Epo-dependent cell lines HCD-57 and Ba/F3 Epo-R, in which Epo stimulates a rise in [Ca](i). Using RT-PCR, Western blotting, and immunolocalization, expression of the longest isoform of mTRPC2, clone 14, was demonstrated in HCD-57 cells, Ba/F3 Epo-R cells, and primary murine erythroblasts. To determine whether erythropoietin is capable of modulating calcium influx through TRPC2, CHO cells were cotransfected with Epo-R subcloned into pTracer-CMV and either murine TRPC2 clone 14 or TRPC6, a negative control, into pQBI50. Successful transfection of Epo-R was verified in single cells by detection of green fluorescent protein from pTracer-CMV using digital video imaging, and successful transfection of TRPC was confirmed by detection of blue fluorescent protein fused through a flexible linker to TRPC. [Ca](i) changes were simultaneously monitored in cells loaded with Rhod-2 or Fura Red. Epo stimulation of CHO cells cotransfected with Epo-R and TRPC2 resulted in a rise in [Ca](i) above base line (372 +/- 71%), which was significantly greater (p < or = 0.0007) than that seen in cells transfected with TRPC6 or empty pQBI50 vector. This rise in [Ca](i) required Epo and extracellular calcium. These results identify a calcium-permeable channel, TRPC2, in erythroid cells and demonstrate modulation of calcium influx through this channel by erythropoietin.  相似文献   

11.
The objective of this study was to test the hypothesis that the mechanism mediating left ventricular (LV) dysfunction in the aging rat heart involves, in part, changes in cardiac cytoskeletal components. Our results show that there were no significant differences in heart rate, LV pressure, or LV diameter between conscious, instrumented young [5.9 +/- 0.3 mo (n = 9)] and old rats [30.6 +/- 0.1 mo (n = 10)]. However, the first derivative of LV pressure (LV dP/dt) was reduced (8,309 +/- 790 vs. 11,106 +/- 555 mmHg/s, P < 0.05) and isovolumic relaxation time (tau) was increased (8.7 +/- 0.7 vs. 6.3 +/- 0.6 ms, P < 0.05) in old vs. young rats, respectively. The differences in baseline LV function in young and old rats, which were modest, were accentuated after beta-adrenergic receptor stimulation with dobutamine (20 mug/kg), which increased LV dP/dt by 170 +/- 9% in young rats, significantly more (P < 0.05) than observed in old rats (115 +/- 5%). Volume loading in anesthetized rats demonstrated significantly impaired LV compliance in old rats, as measured by the LV end-diastolic pressure and dimension relationship. In old rat hearts, there was a significant (P < 0.05) increase in the percentage of LV collagen (2.4 +/- 0.2 vs. 1.3 +/- 0.2%), alpha-tubulin (92%), and beta-tubulin (2.3-fold), whereas intact desmin decreased by 51%. Thus the cardiomyopathy of aging in old, conscious rats may be due not only to increases in collagen but also to alterations in cytoskeletal proteins.  相似文献   

12.
In the present study we have analyzed the mechanisms of calcium entry and mobilization in smooth muscle cells (SMCs) freshly isolated from the abdominal aorta of rats with bile duct ligation (BDL). The SMCs were obtained in the day of the experiment after collagenase digestion and loaded with fura-2. The intracellular calcium levels ([Ca](i)) were determined in individual cells by fluorescence microscopy. Baseline [Ca](i) was slightly but significantly lower in SMCs from BDL rats (70.14+/-2.02 nM, n=51) than in controls (80.77+/-3.52, n=44). The application of the purinergic agonists ATP and UTP induced a fast calcium peak and a slow return to baseline. But the calcium responses were significantly smaller in the cells from the BDL rats. Also, the area under the curve (AUC) of the calcium responses elicited by the agonists was always lower in the SMCs from BDL rats as compared to the controls. Similar results were obtained with UTP, but the calcium response of the SMCs from the BDL rats was even lower than that observed with ATP. In experiments performed in the absence of extracellular calcium, both agonists also elevated [Ca](i), although the responses were much smaller than those obtained in the presence of calcium. Again, the peak and AUC responses of the SMCs from BDL rats were significantly lower than those of the controls. Incubation with NNA, a non-specific nitric oxide synthase (NOS) inhibitor, or with NIL, an inducible NOS inhibitor (iNOS), potentiated and normalized the calcium responses of the SMCs obtained from BDL rats. These data indicate that, in SMCs from bile duct-ligated rats, both the entry of calcium and the mobilization from internal stores is defective in response to purinergic agonists. NO, of an inducible origin, is involved in this altered calcium regulation.  相似文献   

13.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

14.
Myogenic behavior, prevalent in resistance arteries and arterioles, involves arterial constriction in response to intravascular pressure. This process is often studied in vitro by using cannulated, pressurized arterial segments from different regional circulations. We propose a comprehensive model for myogenicity that consists of three interrelated but dissociable phases: 1) the initial development of myogenic tone (MT), 2) myogenic reactivity to subsequent changes in pressure (MR), and 3) forced dilatation at high transmural pressures (FD). The three phases span the physiological range of transmural pressures (e.g., MT, 40-60 mmHg; MR, 60-140 mmHg; FD, >140 mmHg in cerebral arteries) and are characterized by distinct changes in cytosolic calcium ([Ca(2+)](i)), which do not parallel arterial diameter or wall tension, and therefore suggest the existence of additional regulatory mechanisms. Specifically, the development of MT is accompanied by a substantial (200%) elevation in [Ca(2+)](i) and a reduction in lumen diameter and wall tension, whereas MR is associated with relatively small [Ca(2+)](i) increments (<20% over the entire pressure range) despite considerable increases in wall tension and force production but little or no change in diameter. FD is characterized by a significant additional elevation in [Ca(2+)](i) (>50%), complete loss of force production, and a rapid increase in wall tension. The utility of this model is that it provides a framework for comparing myogenic behavior of vessels of different size and anatomic origin and for investigating the underlying cellular mechanisms that govern vascular smooth muscle mechanotransduction and contribute to the regulation of peripheral resistance.  相似文献   

15.
Intracellular calcium ion ([Ca2+]i) transients were measured in single rat ventricular myocytes with the fluorescent indicator furaptra. Cells were voltage clamped with a single patch electrode containing the K+ salt of furaptra and fluorescence at 500 nm was measured during illumination with 350 and 370 nm light. Depolarizing voltage-clamp pulses elicited [Ca2+]-dependent fluorescent transients in 30 of 33 cells tested. The peak change in [Ca2+]i elicited by 50-ms depolarizations from -70 to +10 mV was 1.52 +/- 0.25 microM (mean +/- SEM, n = 7). The size of the [Ca2+]i transient increased in response to 10 microM isoproterenol, prolongation of the depolarization, and increasing pipette [Na+]. Because furaptra is sensitive to Ca2+ and Mg2+, changes in [Mg2+]i during the [Ca2+]i transient could not be measured. Instead, a single-compartment model was developed to simulate changes in [Mg2+] during [Ca2+] transients. The simulations predicted that a 2 microM [Ca2+] transient was accompanied by a slow increase in [Mg2+] (14-29 microM), which became larger as basal [Mg2+] increased (0.5-2.0 mM). The [Mg2+] transient reached a peak approximately 1 s after the peak of the [Ca2+] transient with the slow changes in [Mg2+] dominated by competition at the Ca2+/Mg2+ sites of Troponin. These changes in [Mg2+], however, were so small and slow that they were unlikely to affect the furaptra fluorescence signal at the peak of the [Ca2+]i transient. The [Ca2+]i transient reported by furaptra appears to be larger than that reported by other Ca2+ indicators; however, we conclude this larger transient is at least as accurate as [Ca2+]i transients reported by the other indicators.  相似文献   

16.
The contractile cycle of the cardiac myocyte is essentially controlled by the concentration of intracellular calcium ([Ca2+]i). Measurement of [Ca2+]i using Ca2+-dependent fluorescence and simultaneous monitoring of cell dynamics enable characterization of a variety of substances interacting with ion channels and contractile proteins. In this report we describe a novel method featuring up to 480 frames/s for monitoring rapid changes in cellular calcium and cell length, in which every individual cycle allows effective evaluation of major cell parameters. Computers aid in determination of time to peak (in ms), time to 50% decrease (ms), diastolic Ca2+ (relative fluorescence units, rfu), systolic Ca2+ (rfu), Ca2+ transients (rfu), DeltaCa2+/Delta(t) rise (rfu/s), and DeltaCa2+/Delta(t) fall (rfu/s). Contractile parameters are as follows: maximum cell length (microm), minimum cell length (microm), absolute cell shortening (microm), peak DeltaL/Delta(t) shortening (microm/s), and peak DeltaL/Delta(t) relaxation (microm/s). In summary, we succeeded in demonstrating that this system is a unique and valuable tool that allows simultaneous and accurate assessment of contractile parameters and of calcium movements of isolated adult cardiac myocytes.  相似文献   

17.
The new myofilament Ca2+ sensitizer levosimendan (LSM) is a positive inotropic and vasodilatory agent. Its beneficial effects have been demonstrated at rest in congestive heart failure (CHF). However, its effect during exercise (Ex) in CHF is unknown. We assessed the effects of LSM on left ventricular (LV) dynamics at rest and during Ex in eight conscious, instrumented dogs with pacing-induced CHF. After CHF, with dogs at rest, LSM decreased arterial elastance (Ea) and increased LV contractile performance as assessed by the slope of LV pressure-volume (P-V) relation. LSM caused a >60% increase in the peak rate of mitral flow (dV/dtmax) due to decreases in minimal LV pressure and the time constant of LV relaxation (tau). LV arterial coupling, quantified as the ratio of end-systolic elastance (Ees) to Ea, was increased from 0.47 to 0.85%. LV mechanical efficiency, determined as the ratio of stroke work to total P-V area, was improved from 0.54 +/- 0.09 to 0.61 +/- 0.07. These beneficial effects persisted during Ex after CHF. Compared with CHF Ex dogs, treatment with LSM prevented Ex-induced abnormal increases in mean left atrial pressure and end-diastolic pressure and decreased Ees/Ea. With LSM treatment during CHF Ex, the early diastolic portion of the LV P-V loop was shifted downward with decreased minimal LV pressure and tau values and a further augmented dV/dtmax. Ees/Ea improved, and mechanical efficiency further increased from 0.61 +/- 0.07 to 0.67 +/- 0.07, which was close to the value reached during normal Ex. After CHF, LSM produced arterial vasodilatation; improved LV relaxation and diastolic filling; increased contractility, LV arterial coupling, and mechanical efficiency; and normalized the response to Ex.  相似文献   

18.
An increase in coronary perfusion, transversal stretch of the myocardium, increases developed force (F(dev)) (Gregg effect) through activation of stretch-activated ion channels (SACs). Lengthening of the muscle, longitudinal stretch of the myocardium, causes an immediate increase in F(dev) followed by a slow F(dev) increase (Anrep effect). In isometrically contracting perfused papillary muscles of Wistar rats, we investigated whether both effects were based on similar stretch-induced mechanisms by measuring F(dev) and intracellular Ca(2+) concentration ([Ca(2+)](i)) after a muscle length increase from 85% to 95% L(max) (length at which maximal isometric force develops) at low and high coronary perfusion before and after inhibition of SACs with gadolinium (10 micromol/l Gd(3+)). The increase of F(dev) and peak [Ca(2+)](i) by the Gregg effect was of similar magnitude as the Anrep effect (from 3.5 +/- 0.8 to 3.9 +/- 1.2 mN/mm(2) and from 3.0 +/- 0.7% to 3.8 +/- 0.9% normalized [Ca(2+)](i), means +/- SE). SAC blockade completely blunted the increase of F(dev) and peak [Ca(2+)](i) by the Gregg effect; however, it did not affect the Anrep effect. The slow force response, but not the calcium response, was augmented by an increase in coronary perfusion. Therefore, increased coronary perfusion, transversal stretch of the myocardium, and muscle lengthening, longitudinal stretch of the myocardium, increase myocardial contraction in the rat through different stretch-triggered mechanisms.  相似文献   

19.
We recently developed a mouse model with a single functional allele of Serca2 (Serca2+/-) that shows impaired cardiac contractility and relaxation without overt heart disease. The goal of this study was to test the hypothesis that chronic reduction in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2 levels in combination with an increased hemodynamic load will result in an accelerated pathway to heart failure. Age-matched wild-type and Serca2+/- mice were subjected to 10 wk of pressure overload via transverse aortic coarctation surgery. Cardiac hypertrophy and heart failure were assessed by echocardiography, gravimetry/histology, hemodynamics, and Western blotting analyses. Our results showed that approximately 64% of coarcted Serca2+/- mice were in heart failure compared with 0% of coarcted wild-type mice (P < 0.05). Overall, morbidity and mortality were greatly increased in Serca2+/- mice under pressure overload. Echocardiography assessment revealed a significant increase in left ventricular (LV) mass, and LV hypertrophy in coarcted Serca2+/- mice converted from a concentric to an eccentric pattern, similar to that seen in human heart failure. Coarcted Serca2+/- mice had decreased contractile/systolic and relaxation/diastolic performance and/or function compared with coarcted wild-type mice (P < 0.05), despite a similar duration and degree of pressure overload. SERCA2a protein levels were significantly reduced (>50%) in coarcted Serca2+/- mice compared with noncoarcted and coarcted wild-type mice. Our findings suggest that reduction in SERCA2 levels in combination with an increased hemodynamic load results in an accelerated pathway to heart failure.  相似文献   

20.
Our aim was to measure the influence of sarcoplasmic reticulum (SR) calcium content ([Ca](SRT)) and free SR [Ca] ([Ca](SR)) on the fraction of SR calcium released during voltage clamp steps in isolated rabbit ventricular myocytes. [Ca](SRT), as measured by caffeine application, was progressively increased by conditioning pulses. Sodium was absent in both the intracellular and in the extracellular solutions to block sodium/calcium exchange. Total cytosolic calcium flux during the transient was inferred from I(Ca), [Ca](SRT), [Ca](i), and cellular buffering characteristics. Fluxes via the calcium current (I(Ca)), the SR calcium pump, and passive leak from the SR were evaluated to determine SR calcium release flux (J(rel)). Excitation-contraction (EC) coupling was characterized with respect to both gain (integral J(rel)/integral I(Ca)) and fractional SR calcium release. Both parameters were virtually zero for a small, but measurable [Ca](SRT). Gain and fractional SR calcium release increased steeply and nonlinearly with both [Ca](SRT) and [Ca](SR). We conclude that potentiation of EC coupling can be correlated with both [Ca](SRT) and [Ca](SR). While fractional SR calcium release was not linearly dependent upon [Ca](SR), intra-SR calcium may play a crucial role in regulating the SR calcium release process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号