首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both cellular iron deficiency and excess have adverse consequences. To maintain iron homeostasis, complex mechanisms have evolved to regulate cellular and extracellular iron concentrations. Extracellular iron concentrations are controlled by a peptide hormone hepcidin, which inhibits the supply of iron into plasma. Hepcidin acts by binding to and inducing the degradation of the cellular iron exporter, ferroportin, found in sites of major iron flows: duodenal enterocytes involved in iron absorption, macrophages that recycle iron from senescent erythrocytes, and hepatocytes that store iron. Hepcidin synthesis is in turn controlled by iron concentrations, hypoxia, anemia and inflammatory cytokines. The molecular mechanisms that regulate hepcidin production are only beginning to be understood, but its dysregulation is involved in the pathogenesis of a spectrum of iron disorders. Deficiency of hepcidin is the unifying cause of hereditary hemochromatoses, and excessive cytokine-stimulated hepcidin production causes hypoferremia and contributes to anemia of inflammation.  相似文献   

2.
Hepcidin: a direct link between iron metabolism and immunity   总被引:12,自引:0,他引:12  
Hepcidin, originally discovered in urine as a bactericidal peptide synthesized by hepatocytes was later proved to be a key regulator of iron metabolism at the whole body level, namely, in conditions of altered iron demand such as the increased or decreased total amount of body iron, inflammation, hypoxia and anemia. The major mechanism of hepcidin function seems to be the regulation of transmembrane iron transport. Hepcidin binds to its receptor, protein ferroportin, which serves as a transmembrane iron channel enabling iron efflux from cells. The hepcidin-ferroportin complex is then degraded in lysosomes and iron is locked inside the cells (mainly enterocytes, hepatocytes and macrophages). This leads to lowering of iron absorption in the intestine and to a decrease in serum iron concentration. Utilizing this mechanism, hepcidin regulates serum iron levels during inflammation, infection and possibly also in cancer. Under these conditions iron is shifted from circulation into cellular stores in hepatocytes and macrophages, making it less available for invading microorganisms and tumor cells. In anemia and hypoxia, hepcidin regulates the availability of iron for erythropoiesis. Hepcidin or hepcidin-related therapeutics could find a place in the treatment of various diseases such as hemochromatosis and anemia of chronic disease.  相似文献   

3.
Hepcidin是肝脏特异性表达的一种小分子抗菌肽,是铁代谢的负调节激素。与炎症性贫血、遗传性血色沉着病等疾病的发病机制密切相关。证据显示,Hepcidin直接抑制肠上皮细胞铁吸收和诱导单核巨噬细胞铁滞留。同时,Hepcidin还具有广谱抗菌活性,与固有免疫密切相关。铁超载、感染、炎症及细胞因子可诱导Hepcidin表达,而贫血和缺氧则抑制其表达。Hepcidin的发现及其相关的铁离子运输机制的研究,将为铁离子吸收及分配的铁稳态调节和炎症性贫血、遗传性血色沉着病中的铁代谢障碍的分子机制探索开辟新的途径。本文就Hepcidin的分子特征、表达调控及生物学功能等方面研究进展进行综述。  相似文献   

4.
Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis   总被引:8,自引:0,他引:8  
Hepcidin, a key regulator of iron metabolism, decreases intestinal absorption of iron and its release from macrophages. Iron, anemia, hypoxia, and inflammation were reported to influence hepcidin expression. To investigate regulation of the expression of hepcidin and other iron-related genes, we manipulated erythropoietic activity in mice. Erythropoiesis was inhibited by irradiation or posttransfusion polycythemia and stimulated by phenylhydrazine administration and erythropoietin. Gene expression of hepcidin and other iron-related genes (hemojuvelin, DMT1, ferroportin, transferrin receptors, ferritin) in the liver was measured by the real-time polymerase chain reaction. Hepcidin expression increased despite severe anemia when hematopoiesis was inhibited by irradiation. Suppression of erythropoiesis by posttransfusion polycythemia or irradiation also increased hepcidin mRNA levels. Compensated hemolysis induced by repeated phenylhydrazine administration did not change hepcidin expression. The decrease caused by exogenous erythropoeitin was blocked by postirradiation bone marrow suppression. The hemolysis and anemia decrease hepcidin expression only when erythropoiesis is functional; on the other hand, if erythropoiesis is blocked, even severe anemia does not lead to a decrease of hepcidin expression, which is indeed increased. We propose that hepcidin is exclusively sensitive to iron utilization for erythropoiesis and hepatocyte iron balance, and these changes are not sensed by other genes involved in the control of iron metabolism in the liver.  相似文献   

5.
Iron metabolism in mammals requires a complex and tightly regulated molecular network. The classical view of iron metabolism has been challenged over the past ten years by the discovery of several new proteins, mostly Fe (II) iron transporters, enzymes with ferro-oxydase (hephaestin or ceruloplasmin) or ferri-reductase (Dcytb) activity or regulatory proteins like HFE and hepcidin. Furthermore, a new transferrin receptor has been identified, mostly expressed in the liver, and the ability of the megalin-cubilin complex to internalise the urinary Fe (III)-transferrin complex in renal tubular cells has been highlighted. Intestinal iron absorption by mature duodenal enterocytes requires Fe (III) iron reduction by Dcytb and Fe (II) iron transport through apical membranes by the iron transporter Nramp2/DMT1. This is followed by iron transfer to the baso-lateral side, export by ferroportin and oxidation into Fe (III) by hephaestin prior to binding to plasma transferrin. Macrophages play also an important role in iron delivery to plasma transferrin through phagocytosis of senescent red blood cell, heme catabolism and recycling of iron. Iron egress from macrophages is probably also mediated by ferroportin and patients with heterozygous ferroportin mutations develop progressive iron overload in liver macrophages. Iron homeostasis at the level of the organism is based on a tight control of intestinal iron absorption and efficient recycling of iron by macrophages. Signalling between iron stores in the liver and both duodenal enterocytes and macrophages is mediated by hepcidin, a circulating peptide synthesized by the liver and secreted into the plasma. Hepcidin expression is stimulated in response to iron overload or inflammation, and down regulated by anemia and hypoxia. Hepcidin deficiency leads to iron overload and hepcidin overexpression to anemia. Hepcidin synthesis in response to iron overload seems to be controlled by the HFE molecule. Patients with hereditary hemochromatosis due to HFE mutation have impaired hepcidin synthesis and forced expression of an hepcidin transgene in HFE deficient mice prevents iron overload. These results open new therapeutic perspectives, especially with the possibility to use hepcidin or antagonists for the treatment of iron overload disorders.  相似文献   

6.
Hepcidin is a 25-residue hepatic peptide that regulates iron absorption from the diet and tissue iron distribution. Inappropriately low Hepcidin expression is implicated in the pathogenesis of hereditary hemochromatosis and iron-loading anemias, like the thalassemias. Increased hepcidin expression mediates iron retention in the anemias of inflammation and plays a pathogenic role in iron-refractory iron-deficiency anemia (IRIDA). Because of its clinical importance, Hepcidin is expected to be a useful biomarker for diagnosis and management of iron-related disorders. So far an ELISA for human hepcidin and SELDI-TOF-MS based approaches have been applied to monitor urinary and/or serum hepcidin levels. Here we report a modified protocol for SELDI-TOF based detection of human, urinary hepcidin. We show that CM10 Proteinchips are superior to NP20 Proteinchips commonly used in previously reported protocols to sensitively and accurately detect urinary hepcidin. Application of this modified hepcidin assay accurately detects increased hepcidin levels in the urine of sepsis patients.  相似文献   

7.
Hepcidin, a liver peptide hormone, is the central regulator of iron homeostasis. Hepcidin synthesis is modulated by iron stores, so that iron repletion increases its levels to prevent pathological overload, while iron deficiency strongly inhibits hepcidin to allow an increase in iron absorption from duodenal cells. The emerging pivotal role of hepcidin in iron homeostasis, along with its important links with basic pathways like inflammation, makes the availability of an accurate hepcidin assay as a potentially powerful investigative tool to improve our understanding as well as our diagnostic/prognostic capabilities in many human diseases. There has been a great interest worldwide in developing a reliable and widely applicable assay of the hormone in biological fluids. Being optimal for low-molecular-weight biomarkers, SELDI-TOF-MS has emerged as a valid tool for hepcidin assay. Here we review recent results obtained with this technique, as well as with other Mass Spectrometry-based and immunological methods.  相似文献   

8.
Hepcidin的生物学特性及其研究进展   总被引:1,自引:0,他引:1  
Hepcidin是一种由肝脏合成的富含半胱氨酸的小分子肽。近几年的研究证实hepcidin对于调节机体铁离子的代谢平衡发挥着重要的作用,其可抑制肠道铁吸收和单核巨噬细胞系统铁释放。此外,除了机体铁状况,感染、炎症、贫血和缺氧等原因也会改变hepcidin的表达水平。通过对hepcidin的分子生物学特点、表达调控及生物活性、医学及药用价值等方面研究进展的概述,对采用基因工程的方法生产hepcidin进行了评述及展望。  相似文献   

9.
10.
Hepcidin has emerged as the central regulatory molecule in systemic iron homeostasis. The inhibition of hepcidin may be a favorable strategy for the treatment of anemia of chronic disease. Here, we have reported the design, synthesis, and structure–activity relationships (SAR) of a series of 4-aminopyrimidine compounds as inhibitors of hepcidin production. The optimization study of 1 led to the design of a potent and bioavailable inhibitor of hepcidin production, 34 (DS42450411), which showed serum hepcidin-lowering effects in a mouse model of interleukin-6-induced acute inflammation.  相似文献   

11.
Hepcidin在哺乳类及鱼类中的表达和作用   总被引:3,自引:1,他引:2  
李素萍  付玉明  常彦忠  吴跃峰 《四川动物》2007,26(1):221-223,226
Hepcidin也称为铁调素,是肝脏特异性表达的一种阳离子小分子抗菌肽,具有抑制多种细菌、真菌、病毒和原生动物生长繁殖的作用,是机体天然免疫的一种效应分子;同时也是一种信号分子,参与机体铁代谢,通过直接抑制肠上皮细胞铁吸收和单核巨噬细胞铁释放调节机体铁平衡,与炎症性贫血、遗传性血色素沉着病等铁代谢紊乱性疾病的发病机制密切相关。脂多糖(LPS)、铁超载和病原体可诱导hepcidin表达,而贫血和缺氧可下调其表达。目前,鱼类hepcidin的研究也成为热点,但主要集中在hepcidin的抗菌活性方面,有关其在鱼类铁代谢方面的功能仍需要进一步研究。  相似文献   

12.
Hepcidin是由生物体肝脏表达的一种具有抵抗外界微生物侵害的小分子阳离子多肽,与干扰素、补体等组成了宿主的免疫防御系统.哺乳动物的Hepcidin表达调控受多种因素的影响.本文主要介绍了机体内铁水平、感染和炎症、贫血和缺氧以及运动对Hepcidin表达调控的影响.铁超负荷、脂多糖和病原体可诱导Hepcidin的表达,而贫血、缺氧和运动可下调其表达.本文还对Hepcidin的临床应用研究中存在的问题进行了初步讨论.  相似文献   

13.
14.
Hepcidin has emerged as the key hormone in the regulation of iron balance and recycling. Elevated levels increase iron in macrophages and inhibit gastrointestinal iron uptake. The physiology of hepcidin suggests an additional mechanism by which iron depletion could protect against atherosclerotic lesion progression. Without hepcidin, macrophages retain less iron. Very low hepcidin levels occur in iron deficiency anemia and also in homozygous hemochromatosis. There is defective retention of iron in macrophages in hemochromatosis and also evidently no increase in atherosclerosis in this disorder. In normal subjects with intact hepcidin responses, atherosclerotic plaque has been reported to have roughly an order of magnitude higher iron concentration than that in healthy arterial wall. Hepcidin may promote plaque destabilization by preventing iron mobilization from macrophages within atherosclerotic lesions; the absence of this mobilization may result in increased cellular iron loads, lipid peroxidation, and progression to foam cells. Marked downregulation of hepcidin (e.g., by induction of iron deficiency anemia) could accelerate iron loss from intralesional macrophages. It is proposed that the minimally proatherogenic level of hepcidin is near the low levels associated with iron deficiency anemia or homozygous hemochromatosis. Induced iron deficiency anemia intensely mobilizes macrophage iron throughout the body to support erythropoiesis. Macrophage iron in the interior of atherosclerotic plaques is not exempt from this process. Decreases in both intralesional iron and lesion size by systemic iron reduction have been shown in animal studies. It remains to be confirmed in humans that a period of systemic iron depletion can decrease lesion size and increase lesion stability as demonstrated in animal studies. The proposed effects of hepcidin and iron in plaque progression offer an explanation of the paradox of no increase in atherosclerosis in patients with hemochromatosis despite a key role of iron in atherogenesis in normal subjects.  相似文献   

15.
Hepcidin is the master regulator of iron homeostasis in vertebrates. The synthesis of hepcidin is induced by systemic iron levels and by inflammatory stimuli. While the role of hepcidin in iron regulation is well established, its contribution to host defense is emerging as complex and multifaceted. In this review, we summarize the literature on the role of hepcidin as a mediator of antimicrobial immunity. Hepcidin induction during infection causes depletion of extracellular iron, which is thought to be a general defense mechanism against many infections by withholding iron from invading pathogens. Conversely, by promoting iron sequestration in macrophages, hepcidin may be detrimental to cellular defense against certain intracellular infections, although critical in vivo studies are needed to confirm this concept. It is not yet clear whether hepcidin exerts any iron-independent effects on host defenses.  相似文献   

16.
Hepcidin is a small cysteine-rich signaling peptide that regulates blood serum iron concentrations [1–4]. Patients with chronic inflammation are known to have elevated levels of hepcidin in their blood and urine and often suffer from anemia as a result [5–10]. Measuring and quantifying the amount of active hepcidin in blood and urine can help to determine the cause and severity of the anemia thereby helping physicians determine the correct course of treatment [11–16]. We have developed a simple technique to isolate, chemically modify, and concentrate hepcidin from blood and urine coupled to high-pressure liquid chromatography mass spectrometry that can accurately and reproducibly measure and quantify the active hormone.  相似文献   

17.
This study aims to measure iron nutrition parameters and to determine the presence of anemia in obese type 2 diabetic patients and to analyze the mRNA relative abundance of genes related to inflammation, immune system, iron metabolism, and mitochondrial activity. Obese type 2 diabetic (OBDM, n?=?30) and healthy subjects (Cn, n?=?30) were studied. Biochemical, anthropometric, and iron nutrition parameters were determined. Peripheral mononuclear cells from type 2 diabetic and control group were challenged with high concentrations of iron (Fe) and glucose and total mRNA was isolated. The frequency of anemia among diabetic patients was 4/30. OBDM patients with or without anemia had higher levels of ferritin and high-sensitivity C-reactive protein than the Cn group. mRNA relative abundance of nuclear factor kappa-light-chain-enhancer of activated B cells was elevated in OBDM with anemia, and mRNA expression of interleukin-6 and toll-like receptor (TLR) 2 was increased in OBDM group in basal high Fe and high glucose concentrations. The expression of tumor necrosis factor alpha and TLR-4 was increased in OBDM with anemia in all experimental conditions. Hepcidin mRNA expression was increased in OBDM with anemia even in basal Fe concentration, and mitofusin 2 was decreased in all experimental conditions. This study shows that obese type 2 diabetic patients have iron distribution disorders associated to their proinflammatory state, and anemic subjects have a marked elevation of hepcidin mRNA expression.  相似文献   

18.
Hepcidin has emerged as the central regulatory molecule in systemic iron homeostasis, and its inhibition could be a favorable strategy for treating anemia of chronic disease (ACD). Here, we report the design, synthesis and structure–activity relationships (SAR) of a series of 4,6-disubstituted indazole compounds as hepcidin production inhibitors. The optimization study of multi-kinase inhibitor 1 led to the design of a potent and bioavailable hepcidin production inhibitor, 32 (DS28120313), which showed serum hepcidin-lowering effects in an interleukin-6-induced acute inflammatory mouse model.  相似文献   

19.
Hepcidin plays a key role in regulating iron metabolism by blocking iron efflux from macrophages and enterocytes. Hepcidin is synthesized primarily in the liver, and its expression is increased by iron overload and inflammation. Obesity is associated with chronic inflammation as well as poor iron status. Central obesity causes adipocyte hypoxia resulting in chronic inflammation. Therefore, the objective of the present study was to determine if adipocyte hypoxia and associated inflammation signal hepatocyte hepcidin expression. The effect of adipocyte hypoxia on hepcidin expression was modeled using a 3T3-L1 adipocyte/Huh7 hepatocyte co-culture model. Adipocytes were cultured at either standard conditions (19% O2) or hypoxic conditions (1% O2). Compared to standard conditions, hypoxic 3T3-L1 cells had significantly higher IL-6 and leptin expression. Treatment of Huh7 cells with media from hypoxic or LPS-treated 3T3-L1 adipocytes significantly increased hepcidin promoter activity and mRNA compared to cells treated with normoxic 3T3-L1 media or control media. When the hepcidin STAT3 binding site was mutated, promoter activation by hypoxic media was abrogated. These data suggest that adipocyte hypoxia (a feature of central obesity) may increase hepcidin expression and plays a role in the association between obesity and poor iron status.  相似文献   

20.
Hepcidin is a liver-derived hormone with a key role in iron homeostasis. In addition to iron, it is regulated by inflammation and hypoxia, although mechanisms of hypoxic regulation remain unclear. In hepatocytes, hepcidin is induced by bone morphogenetic proteins (BMPs) through a receptor complex requiring hemojuvelin (HJV) as a co-receptor. Type II transmembrane serine proteinase (TMPRSS6) antagonizes hepcidin induction by BMPs by cleaving HJV from the cell membrane. Inactivating mutations in TMPRSS6 lead to elevated hepcidin levels and consequent iron deficiency anemia. Here we demonstrate that TMPRSS6 is up-regulated in hepatic cell lines by hypoxia and by other activators of hypoxia-inducible factor (HIF). We show that TMPRSS6 expression is regulated by both HIF-1α and HIF-2α. This HIF-dependent up-regulation of TMPRSS6 increases membrane HJV shedding and decreases hepcidin promoter responsiveness to BMP signaling in hepatocytes. Our results reveal a potential role for TMPRSS6 in hepcidin regulation by hypoxia and provide a new molecular link between oxygen sensing and iron homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号