首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated receptor structural components of the melanocortin-4 receptor (MC4R) responsible for ligand-dependent inverse agonism. We utilized agouti-related protein (AGRP), an inverse agonist which reduces MC4R basal cAMP production, as a tool to determine the molecular mechanism. We tested a series of chimeric receptors and utilized MC4R and MC1R as templates, in which AGRP is an inverse agonist for MC4R but not for MC1R. Our results indicate that replacements of the extracellular loops 1, 2 and 3 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity. However, replacement of the N terminus of MC4R with the same region of MC1R decreases AGRP inverse agonism. Replacement of transmembrane domains 3, 4, 5 and 6 of MC4R with the corresponding regions of MC1R did not affect AGRP inverse agonist activity but mutation of D90A in transmembrane 2 (TM2) and D298A in TM7 abolished AGRP inverse activity. Deletion of the distal MC4R C terminus fails to maintain AGRP mediated reduction in basal cAMP production although it maintains NDP-MSH mediated cAMP production. In conclusion, our results indicate that the N terminus and the distal C terminus of MC4R do appear to play important roles in AGRP inverse agonism but not NDP-MSH mediated receptor activation. Our results also indicate that the residues D90 in TM2 and D298 in TM7 of hMC4R are involved in not only NDP-MSH mediated receptor activation but also AGRP mediated inverse agonism.  相似文献   

2.
G protein‐coupled receptor (GPCR) kinases (GRKs) selectively recognize and are allosterically regulated by activated GPCRs, but the molecular basis for this interaction is not understood. Herein, we report crystal structures of GRK6 in which regions known to be critical for receptor phosphorylation have coalesced to stabilize the kinase domain in a closed state and to form a likely receptor docking site. The crux of this docking site is an extended N‐terminal helix that bridges the large and small lobes of the kinase domain and lies adjacent to a basic surface of the protein proposed to bind anionic phospholipids. Mutation of exposed, hydrophobic residues in the N‐terminal helix selectively inhibits receptor, but not peptide phosphorylation, suggesting that these residues interact directly with GPCRs. Our structural and biochemical results thus provide an explanation for how receptor recognition, phospholipid binding, and kinase activation are intimately coupled in GRKs.  相似文献   

3.
The belief that G protein-coupled receptors exist and function as monomeric, non-interacting species has been largely supplanted in recent years by evidence, derived from a range of approaches, that indicate they can form dimers and/or higher-order oligomeric complexes. Key roles for receptor homo-dimerisation include effective quality control of protein folding prior to plasma membrane delivery and interactions with hetero-trimeric G proteins. Growing evidence has also indicated the potential for many co-expressed G protein-coupled receptors to form hetero-dimers/oligomers. The relevance of this to physiology and function is only beginning to be unravelled but may offer great potential for more selective therapeutic intervention.  相似文献   

4.
G protein-coupled receptors (GPCRs) represent the largest family of approved therapeutic targets. Ligands stimulating these receptors specifically activate multiple signalling pathways that induce not only the desired therapeutic response, but sometimes untolerated side effects that limit their clinical use. The diversity in signalling induced by each ligand could be considered a viable path for improving this situation. Biased agonism, which offers the promise of identifying pathway-selective drugs has been proposed as a means to exploit this opportunity. However, identifying biased agonists is not an easy process and quantifying ligand bias for a given signalling pathway requires careful consideration and control of several confounding factors. To date, the molecular mechanisms of biased signalling remain unclear and known theories that constitute our understanding of the mechanisms underlying therapeutic and side effects are still being challenged, making the strategy of selecting promising potential drugs more difficult. This special issue summarizes the latest advances in the discovery and optimization of biased ligands for different GPCRs. It also focuses on identifying novel insights into the field of biased agonism, while at the same time, highlighting the conceptual and experimental limitations of that concept for drug discovery. This aims to broaden our understanding of the signalling induced by the various identified biased agonists and provide perspectives that could straighten our path towards the development of more effective and tolerable therapeutics.  相似文献   

5.
6.
Human cytomegalovirus (HCMV) encodes a G protein-coupled receptor (GPCR), named US28, which shows homology to chemokine receptors and binds several chemokines with high affinity. US28 induces migration of smooth muscle cells, a feature essential for the development of atherosclerosis, and may serve as a co-receptor for human immunodeficiency virus-type 1 entry into cells. Previously, we have shown that HCMV-encoded US28 displays constitutive activity, whereas its mammalian homologs do not. In this study we have identified a small nonpeptidergic molecule (VUF2274) that inhibits US28-mediated phospholipase C activation in transiently transfected COS-7 cells and in HCMV-infected fibroblasts. Moreover, VUF2274 inhibits US28-mediated HIV entry into cells. In addition, VUF2274 fully displaces radiolabeled RANTES (regulated on activation normal T cell expressed and secreted) binding at US28, apparently with a noncompetitive behavior. Different analogues of VUF2274 have been synthesized and pharmacologically characterized, to understand which features are important for its inverse agonistic activity. Finally, by means of mutational analysis of US28, we have identified a glutamic acid in transmembrane 7 (TM 7), which is highly conserved among chemokine receptors, as a critical residue for VUF2274 binding to US28. The identification of a full inverse agonist provides an important tool to investigate the relevance of US28 constitutive activity in viral pathogenesis.  相似文献   

7.
The belief that G protein-coupled receptors exist and function as monomeric, non-interacting species has been largely supplanted in recent years by evidence, derived from a range of approaches, that indicate they can form dimers and/or higher-order oligomeric complexes. Key roles for receptor homo-dimerisation include effective quality control of protein folding prior to plasma membrane delivery and interactions with hetero-trimeric G proteins. Growing evidence has also indicated the potential for many co-expressed G protein-coupled receptors to form hetero-dimers/oligomers. The relevance of this to physiology and function is only beginning to be unravelled but may offer great potential for more selective therapeutic intervention.  相似文献   

8.
The Drosophila Genome Project website (www.flybase.org) contains the sequence of an annotated gene (CG6111) expected to code for a G protein-coupled receptor. We have cloned this receptor and found that its gene was not correctly predicted, because an annotated neighbouring gene (CG14547) was also part of the receptor gene. DNA corresponding to the corrected gene CG6111 was expressed in Chinese hamster ovary cells, where it was found to code for a receptor that could be activated by low concentrations of crustacean cardioactive peptide, which is a neuropeptide also known to occur in Drosophila and other insects (EC(50), 5.4 x 10(-10)M). Other known Drosophila neuropeptides, such as adipokinetic hormone, did not activate the receptor. The receptor is expressed in all developmental stages from Drosophila, but only very weakly in larvae. In adult flies, the receptor is mainly expressed in the head. Furthermore, we identified a gene sequence in the genomic database from the malaria mosquito Anopheles gambiae that very likely codes for a crustacean cardioactive peptide receptor.  相似文献   

9.
Accurate characterization of the molecular mechanisms of the action of ligands is an extremely important issue for their appropriate research, pharmacological, and therapeutic uses. In view of this fact, the aim of the present work was to investigate the mechanisms involved in the actions of mepyramine at the guinea pig H(1) receptor stably expressed in Chinese hamster ovary cells. We found that mepyramine is able to decrease the basal constitutive activity of the guinea pig H(1) receptor, to bind with high affinity to a G(q/11) protein-coupled form of the receptor and to promote a G protein-coupled inactive state of the H(1) receptor that interferes with the G(q/11)-mediated signaling of the endogenously expressed ATP receptor, as predicted by the Cubic Ternary Complex Model of receptor occupancy. The effect of mepyramine on ATP-induced signaling was specifically neutralized by Galpha(11) overexpression, indicating that mepyramine is able to reduce G protein availability for other non-related receptors associated with the same signaling pathway. Finally, we found a loss of mepyramine efficacy in decreasing basal levels of intracellular calcium at high Galpha(11) expression levels, which can be theoretically explained in terms of high H(1) receptor constitutive activity. The whole of the present work sheds new light on H(1) receptor pharmacology and the mechanisms H(1) receptor inverse agonists could use to exert their observed negative efficacy.  相似文献   

10.
11.
G protein-coupled receptors (GPCR) can participate in a number of signaling pathways, and this property led to the concept of biased GPCR agonism. Agonists, antagonists and allosteric modulators can bind to GPCRs in different ways, creating unique conformations that differentially modulate signaling through one or more G proteins. A unique neuromedin B (NMBR) GPCR-signaling platform controlling mammalian neuraminidase-1 (Neu1) and matrix metalloproteinase-9 (MMP9) crosstalk has been reported in the activation of the insulin receptor (IR) through the modification of the IR glycosylation. Here, we propose that there exists a biased GPCR agonism as small diffusible molecules in the activation of Neu1-mediated insulin receptor signaling. GPCR agonists bombesin, bradykinin, angiotensin I and angiotensin II significantly and dose-dependently induce Neu1 sialidase activity and IR activation in human IR-expressing rat hepatoma cell lines (HTC-IR), in the absence of insulin. Furthermore, the GPCR agonist-induced Neu1 sialidase activity could be specifically blocked by the NMBR inhibitor, BIM-23127. Protein expression analyses showed that these GPCR agonists significantly induced phosphorylation of IRβ and insulin receptor substrate-1 (IRS1). Among these, angiotensin II was the most potent GPCR agonist capable of promoting IRβ phosphorylation in HTC-IR cells. Interestingly, treatment with BIM-23127 and Neu1 inhibitor oseltamivir phosphate were able to block GPCR agonist-induced IR activation in HTC cells in vitro. Additionally, we found that angiotensin II receptor (type I) exists in a multimeric receptor complex with Neu1, IRβ and NMBR in naïve (unstimulated) and stimulated HTC-IR cells with insulin, bradykinin, angiotensin I and angiotensin II. This complex suggests a molecular link regulating the interaction and signaling mechanism between these molecules on the cell surface. These findings uncover a biased GPCR agonist-induced IR transactivation signaling axis, mediated by Neu1 sialidase and the modification of insulin receptor glycosylation.  相似文献   

12.
Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor   总被引:1,自引:0,他引:1  
gamma-Hydroxybutyric acid (GHB) is a naturally occurring metabolite of GABA that has been postulated to exert ubiquitous neuropharmacological effects through GABA(B) receptor (GABA(B)R)-mediated mechanisms. The alternative hypothesis that GHB acts via a GHB-specific, G protein-coupled presynaptic receptor that is different from the GABA(B)R was tested. The effect of GHB on regional and subcellular brain adenylyl cyclase in adult and developing rats was determined and compared with that of the GABA(B)R agonist (-)-baclofen. Also, using guanosine 5'-O:-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding and low-K:(m) GTPase activity as markers the effects of GHB and (-)-baclofen on G protein activity in the brain were determined. Neither GHB nor baclofen had an effect on basal cyclic AMP (cAMP) levels. GHB significantly decreased forskolin-stimulated cAMP levels by 40-50% in cortex and hippocampus but not thalamus or cerebellum, whereas (-)-baclofen had an effect throughout the brain. The effect of GHB on adenylyl cyclase was observed in presynaptic and not postsynaptic subcellular tissue preparations, but the effect of baclofen was observed in both subcellular preparations. The GHB-induced alteration in forskolin-induced cAMP formation was blocked by a specific GHB antagonist but not a specific GABA(B)R antagonist. The (-)-baclofen-induced alteration in forskolin-induced cAMP formation was blocked by a specific GABA(B)R antagonist but not a specific GHB antagonist. The negative coupling of GHB to adenylyl cyclase appeared at postnatal day 21, a developmental time point that is concordant with the developmental appearance of [(3)H]GHB binding in cerebral cortex, but the effects of (-)-baclofen were present by postnatal day 14. GHB and baclofen both stimulated [(35)S]GTPgammaS binding and low-K:(m) GTPase activity by 40-50%. The GHB-induced effect was blocked by GHB antagonists but not by GABA(B)R antagonists and was seen only in cortex and hippocampus. The (-)-baclofen-induced effect was blocked by GABA(B)R antagonists but not by GHB antagonists and was observed throughout the brain. These data support the hypothesis that GHB induces a G protein-mediated decrease in adenylyl cyclase via a GHB-specific G protein-coupled presynaptic receptor that is different from the GABA(B)R.  相似文献   

13.
We have identified human ArhGAP9 as a novel MAP kinase docking protein that interacts with Erk2 and p38α through complementarily charged residues in the WW domain of ArhGAP9 and the CD domains of Erk2 and p38α. This interaction sequesters the MAP kinases in their inactive states through displacement of MAP kinase kinases targeting the same sites. While over-expression of wild type ArhGAP9 caused MAP kinase activation by the epidermal growth factor receptor (EGFR) to be suppressed and preserved the actin stress fibres in quiescent Swiss 3T3 fibroblasts, over-expression of an ArhGAP9 mutant defective in MAP kinase binding restored EGFR-induced MAP kinase activation and resulted in significant disruption of the stress fibres, consistent with the role of Erk activation in disassembly of actin stress fibres. The interaction between ArhGAP9 and the MAP kinases represents a novel mechanism of cross-talk between Rho GTPase and MAP kinase signaling.  相似文献   

14.
To characterize the mechanism by which heterotrimeric G-proteins interpret the signals coming from various neurotransmitters of diverse efficacies (agonists and partial agonists) acting on alpha(2A)-adrenergic receptors, we used a fluorescent resonance energy transfer-based approach to study the effects of these partial agonists on the activation process of both the alpha(2A)-adrenergic receptor and its cognate G(i)-protein. We show that ligands of different efficacies switch the receptor into distinct conformational states, which in turn set the speed and extent of the G(i)-protein signaling. Thus, in cells the efficacy by which a receptor responds to diverse ligands is caused by the ability of the G-protein to differentiate between distinct receptor conformations. The data provide a new key characteristic underlying the mechanism of partial agonism at G-protein-coupled receptors.  相似文献   

15.
Classically, G protein-coupled receptors (GPCRs) relay signals by directly activating heterotrimeric guanine nucleotide-binding proteins (G proteins). Increasing evidence indicates that GPCRs may also signal through G protein-independent pathways. JAK/STATs, Src-family tyrosine kinases, GRKs/beta-arrestins, and PDZ domain-containing proteins have been suggested to directly relay signals from GPCRs independent of G proteins. In addition, our laboratory recently reported that the beta(2) adrenergic receptor (beta(2)AR) could switch from G protein-coupled to G protein-independent ERK (extracellular signal-regulated kinase) activation in an agonist dosage-dependent manner. This finding provides a novel mechanism for G protein-independent GPCR signaling. This review focuses on recent progress in understanding the mechanisms by which G protein-independent GPCR signaling occurs.  相似文献   

16.
The complex disease asthma, an obstructive lung disease in which excessive airway smooth muscle (ASM) contraction as well as increased ASM mass reduces airway lumen size and limits airflow, can be viewed as a consequence of aberrant airway G protein-coupled receptor (GPCR) function. The central role of GPCRs in determining airway resistance is underscored by the fact that almost every drug used in the treatment of asthma directly or indirectly targets either GPCR–ligand interaction, GPCR signaling, or processes that produce GPCR agonists. Although many airway cells contribute to the regulation of airway resistance and architecture, ASM properties and functions have the greatest impact on airway homeostasis. The theme of this review is that GPCR-mediated regulation of ASM tone and ASM growth is a major determinant of the acute and chronic features of asthma, and multiple strategies targeting GPCR signaling may be employed to prevent or manage these features.  相似文献   

17.
武珅  陆涛峰  武爽  关伟军 《遗传》2013,35(1):27-34
G蛋白偶联受体40(G protein-coupled receptor 40, GPR40)是一种具有7个跨膜α螺旋结构的G蛋白偶联受体, 主要分布于胰腺细胞和神经系统细胞。它能与机体内游离的中长链脂肪酸结合, 激活细胞内信号通路, 从而调节其生理功能。在胰岛细胞中, GPR40可被游离脂肪酸激活, 促使细胞内钙离子浓度升高, 进而促进胰岛素释放。根据这一机理, 以GPR40为靶点的激动剂类药物相继被开发, 用于糖尿病治疗。GPR40也参与神经发生过程, 但到目前为止其相关机制尚不清楚。文章从基因结构、表达调控、蛋白配体及应用、生理功能等方面详细介绍了GPR40的研究现状, 总结了目前研究中所遇到的问题, 并对未来的研究热点进行展望。  相似文献   

18.
19.
The family of leucine-rich repeat-containing G protein-coupled receptors (LGRs) shows members in both vertebrates and invertebrates including the most ancestral ones. Although this suggests an early evolutionary origin of this family of receptors, little is known about their diversity in molluscs, a major phylum of bilaterian invertebrates. Based on sequences of mammalian and insect LGRs, we have cloned and characterized a new typical LGR in the bivalve mollusc Crassostrea gigas. This receptor named Cg-LGRB exhibits high degree of amino acid sequence identity with both mammalian and Drosophila LGRs. Phylogenetic analysis indicates that Cg-LGRB belongs to the cluster of type B orphan LGRs and suggests that molluscs likely express the three LGR subgroups identified previously in other animals. Quantitative RT-PCR shows that Cg-LGRB is expressed mainly in the digestive gland and only at moderate levels in other organs and developmental stages. A possible involvement in the control of cytological changes occurring in bivalve mollusc digestive gland is discussed.  相似文献   

20.
A G protein-coupled receptor for UDP-glucose   总被引:17,自引:0,他引:17  
Uridine 5'-diphosphoglucose (UDP-glucose) has a well established biochemical role as a glycosyl donor in the enzymatic biosynthesis of carbohydrates. It is less well known that UDP-glucose may possess pharmacological activity, suggesting that a receptor for this molecule may exist. Here, we show that UDP-glucose, and some closely related molecules, potently activate the orphan G protein-coupled receptor KIAA0001 heterologously expressed in yeast or mammalian cells. Nucleotides known to activate P2Y receptors were inactive, indicating the distinctly novel pharmacology of this receptor. The receptor is expressed in a wide variety of human tissues, including many regions of the brain. These data suggest that some sugar-nucleotides may serve important physiological roles as extracellular signaling molecules in addition to their familiar role in intermediary metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号